Learn More
AMPA receptors mediate fast excitatory synaptic transmission and are essential for synaptic plasticity. ANQX, a photoreactive AMPA receptor antagonist, is an important biological probe used to irreversibly inactivate AMPA receptors. Here, using X-ray crystallography and mass spectroscopy, we report that ANQX forms two major products in the presence of the(More)
Current approaches to inhibit nuclear receptor (NR) activity target the hormone binding pocket but face limitations. We have proposed that inhibitors, which bind to nuclear receptor surfaces that mediate assembly of the receptor's binding partners, might overcome some of these limitations. The androgen receptor (AR) plays a central role in prostate cancer,(More)
Nuclear orphan receptor TLX (NR2E1) functions primarily as a transcriptional repressor and its pivotal role in brain development, glioblastoma, mental retardation and retinopathologies make it an attractive drug target. TLX is expressed in the neural stem cells (NSCs) of the subventricular zone and the hippocampus subgranular zone, regions with persistent(More)
Granzyme K (GzmK) belongs to a family of trypsin-like serine proteases localized in electron dense cytoplasmic granules of activated natural killer and cytotoxic T-cells. Like the related granzymes A and B, GzmK can trigger DNA fragmentation and is involved in apoptosis. We expressed the Ser(195) --> Ala variant of human pro-GzmK in Escherichia coli,(More)
Nuclear receptors (NRs) form a large superfamily of transcription factors that participate in virtually every key biological process. They control development, fertility, gametogenesis and are misregulated in many cancers. Their enormous functional plasticity as transcription factors relates in part to NR-mediated interactions with hundreds of coregulatory(More)
Androgen receptor (AR) is a major therapeutic target that plays pivotal roles in prostate cancer (PCa) and androgen insensitivity syndromes. We previously proposed that compounds recruited to ligand-binding domain (LBD) surfaces could regulate AR activity in hormone-refractory PCa and discovered several surface modulators of AR function. Surprisingly, the(More)
The androgen receptor (AR) regulates gene transcription in many tissues and is profoundly important in prostate cancer. Antiandrogens compete with the natural hormone and are front line therapeutics to treat prostate cancer. However, antiandrogens frequently become ineffective after prolonged treatment because of development of tumor resistance. This paper(More)
Granzyme A (GzmA) belongs to a family of trypsin-like serine proteases localized in cytoplasmic granules of activated lymphocytes and natural killer (NK) cells. In contrast to the related granzyme B (GzmB), GzmA forms a stable disulfide-linked homodimer and triggers target-cell death in a caspase-independent way. Limited proteolysis of a high-molecular-mass(More)
This study investigates the effect of thyroid hormones on the morphology of hippocampal neurons in adult rats. Hypo- and hyperthyroidism were induced by adding 0.02% methimazole and 1% l-thyroxine, in drinking water from 40 days of age, respectively. When the rats were 89 days old their brains were removed and stained by a modified Golgi method and blood(More)
The androgen receptor (AR) is a ligand-activated transcription factor that is essential for prostate cancer development. It is activated by androgens through its ligand-binding domain (LBD), which consists predominantly of 11 α-helices. Upon ligand binding, the last helix is reorganized to an agonist conformation termed activator function-2 (AF-2) for(More)