Eva E. Qwarnstrom

Learn More
Individual-based or agent-based models have proved useful in a variety of different biological contexts. This paper presents an agent-based model using a formal computational modelling approach to model a crucial biological system--the intracellular NF-kappaB signalling pathway. The pathway is vital to immune response regulation, and is fundamental to basic(More)
Keywords: Immune system NF-␬B Kinase Metabolic flux analysis Cell culture Transfection a b s t r a c t Activation of the transcription factor NF-␬B is central to control of immune and inflammatory responses. Cytokine induced activation through the classical or canonical pathway relies on degradation of the inhibitor, I␬B␣ and regulation by the IKK␤ kinase.(More)
Nature is governed by local interactions among lower-level sub-units, whether at the cell, organ, organism, or colony level. Adaptive system behaviour emerges via these interactions, which integrate the activity of the sub-units. To understand the system level it is necessary to understand the underlying local interactions. Successful models of local(More)
Many of the complex systems found in biology are comprised of numerous components, where interactions between individual agents result in the emergence of structures and function, typically in a highly dynamic manner. Often these entities have limited lifetimes but their interactions both with each other and their environment can have profound biological(More)
Host defense against infection is induced by Toll-like and interleukin (IL)-1 receptors, and controlled by the transcription factor NF-kappaB. Our earlier studies have shown that IL-1 activation impacts cytoskeletal structure and that IL-1 receptor (IL-1RI) function is substrate-dependent. Here we identify a novel regulatory component, TILRR, which(More)
Activation of the transcription factor NF-kappaB is central to control of immune and inflammatory responses. Cytokine induced activation through the classical or canonical pathway relies on degradation of the inhibitor, IkappaBalpha and regulation by the IKKbeta kinase. In addition, the NF-kappaB is activated through the NF-kappaB-inducing kinase, NIK.(More)
Computational modelling and simulation is increasingly being used to complement traditional wet-lab techniques when investigating the mechanistic behaviours of complex biological systems. In order to ensure computational models are fit for purpose, it is essential that the abstracted view of biology captured in the computational model, is clearly and(More)
Agent based modelling is a methodology for simulating a variety of systems across a broad spectrum of fields. However, due to the complexity of the systems it is often impossible or impractical to model them at a one to one scale. In this paper we use a simple reaction rate model implemented using the FLAME framework to test the impact of common methods for(More)
The transcription factor NF-κB (nuclear factor kappa B) is activated by Toll-like receptors and controlled by mechanotransduction and changes in the cytoskeleton. In this study we combine 3-D predictive protein modelling and in vitro experiments with in silico simulations to determine the role of the cytoskeleton in regulation of NF-κB. Simulations used a(More)