Learn More
Cyanobacteria are extensively distributed in terrestrial and aquatic environments all over the world. Most cyanobacteria can produce the neurotoxin beta-N-methylamino-L-alanine (BMAA), which has been detected in several water systems and could accumulate in food chains. The aim of the study was to investigate the transfer of BMAA to fetal and neonatal(More)
beta-N-methylamino-l-alanine (BMAA), a neurotoxic amino acid produced by cyanobacteria, has been suggested to be involved in the etiology of a neurodegenerative disease complex which includes Parkinson-dementia complex (PDC). In PDC, neuromelanin-containing neurons in substantia nigra are degenerated. Many PDC patients also have an uncommon pigmentary(More)
Most cyanobacteria (blue-green algae) can produce the neurotoxin beta-N-methylamino-L-alanine (BMAA). Dietary exposure to BMAA has been suggested to be involved in the etiology of the neurodegenerative disease amyotrophic lateral sclerosis/Parkinsonism-dementia complex (ALS/PDC). Little is known about BMAA-induced neurotoxicity following neonatal(More)
Following a single ip injection (12, 25, 50 mg/kg) of the herbicide dichlobenil (2,6-dichlorobenzonitrile) into C57Bl mice or Sprague-Dawley rats, an extensive destruction of the glands of Bowman and in the neuroepithelium of the olfactory region was observed. In mice, necrosis of the Bowman's glands was evident 8 hr after the lowest dose (12 mg/kg).(More)
We have reported previously that exposure to the cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) during the neonatal period causes cognitive impairments in adult rats. The aim of this study was to investigate the long-term effects of neonatal BMAA exposure on learning and memory mechanisms and to identify early morphological changes in the(More)
Bisphenol A (BPA) is widely used in the manufacturing of consumer products such as plastic food containers and food cans. Experimental studies suggest a relationship between exposure to BPA and changes in metabolic processes and reproductive organs. Also, epidemiological studies report an association between elevated exposure to BPA and cardiovascular(More)
The cyanobacterial toxin β-N-methylamino-L-alanine (BMAA) has been proposed to contribute to neurodegenerative disease. We have previously reported a selective uptake of BMAA in the mouse neonatal hippocampus and that exposure during the neonatal period causes learning and memory impairments in adult rats. The aim of this study was to characterize effects(More)
The environmental neurotoxin β-N-methylamino-l-alanine (BMAA) has been implicated in the etiology of neurodegenerative disease, and recent studies indicate that BMAA can be misincorporated into proteins. BMAA is a developmental neurotoxicant that can induce long-term learning and memory deficits, as well as regionally restricted neuronal degeneration and(More)
β-Methylamino-L-alanine (BMAA) is implicated in the aetiology of neurodegenerative disorders. Neonatal exposure to BMAA induces cognitive impairments and progressive neurodegenerative changes including intracellular fibril formation in the hippocampus of adult rats. It is unclear why the neonatal hippocampus is especially vulnerable and the critical(More)
Histopathology was used to characterize long-term toxic effects in the olfactory system following a single ip dose (4-65 mg/kg) of methylsulfonyl-2,6-dichlorobenzene, (2,6-(diCl-MeSO(2)-B)), in female NMRI mice. The effects of 2,6-(diCl-MeSO(2)-B) and its 2, 5-chlorinated isomer, (2,5-(diCl-MeSO(2)-B)), on the levels of glial fibrillary acidic protein(More)