Eunkyung Jeon

Learn More
We sequenced an approximately 29-kb region from Xanthomonas axonopodis pv. glycines that contained the Hrp type III secretion system, and we characterized the genes in this region by Tn3-gus mutagenesis and gene expression analyses. From the region, hrp (hypersensitive response and pathogenicity) and hrc (hrp and conserved) genes, which encode type III(More)
PURPOSE 5-Fluorouracil (5-FU) has been the mainstay treatment for colorectal cancer for the past few decades. However, as with other cancers, development of 5-FU resistance has been a major obstacle in colorectal cancer chemotherapy. The purpose of this study was to gain further understanding of the mechanisms underlying 5-FU resistance in colorectal cancer(More)
5-Fluorouracil (5-FU) is widely used for treatment of advanced colorectal cancer. However, it is common for such patients to develop resistance to 5-FU, and this drug resistance becomes a critical problem for chemotherapy. The mechanisms underlying this resistance are largely unknown. To screen for proteins possibly responsible for 5-FU resistance, cells(More)
Harpins are heat-stable, glycine-rich type III-secreted proteins produced by plant pathogenic bacteria, which cause a hypersensitive response (HR) when infiltrated into the intercellular space of tobacco leaves; however, the biochemical mechanisms by which harpins cause plant cell death remain unclear. In this study, we determined the biochemical(More)
HpaG is a type III-secreted elicitor protein of Xanthomonas axonopodis pv. glycines. We have determined the critical amino acid residues important for hypersensitive response (HR) elicitation by random and site-directed mutagenesis of HpaG and its homolog XopA. A plasmid clone carrying hpaG was mutagenized by site-directed mutagenesis, hydroxylamine(More)
Polymerization of rigid organic building blocks with multiple reactive functional groups yields microporous organic networks whose pore sizes approach molecular length scales. Because molecules may be selectively adsorbed or transported inside these pores, the networks are promising for molecular storage, separation, delivery, or catalysis. However, most of(More)
We demonstrate the synthesis of a microporous covalent-network membrane derived from co-continuous blends of a porogenic urea network and a polyimide (PI). We show that the urea networks in the PI matrix may be thermally rearranged while selectively expelling small molecular fragments, thereby forming a new network bearing reticular microporous molecular(More)
The preparation of bicontinuous nanoporous covalent frameworks, which are promising for caging active enzymes, is demonstrated. The frameworks have three- dimensionally continuous, hydrophilic pores with widths varying between 5 and 30 nm. Enzymes were infiltrated into the bicontinuous pore by applying a pressured enzyme solution. The new materials and(More)
  • 1