Learn More
Ovarian cancer has the highest mortality rate of all gynecological cancers with a high recurrence rate. It is important to understand the nature of recurring cancer cells to terminally eliminate ovarian cancer. The winged helix transcription factor Forkhead box P1 (FOXP1) has been reported to function as either oncogene or tumor-suppressor in various(More)
Hypoxia and NOTCH signaling have been reported to be associated with the self-renewal and drug resistance of cancer stem cells (CSCs). However, the molecular mechanisms by which hypoxia and NOTCH signaling stimulate the self-renewal and drug resistance of ovarian CSCs are poorly understood. In the present study, we identified SOX2 as a key transcription(More)
Reprogramming of somatic cells to pluripotent cells requires the introduction of factors driving fate switches. Viral delivery has been the most efficient method for generation of induced pluripotent stem cells. Transfection, which precedes virus production, is a commonly-used process for delivery of nucleic acids into cells. The aim of this study is to(More)
Cancer stem cells are a subpopulation of cancer cells characterized by self-renewal ability, tumorigenesis and drug resistance. The aim of this study was to investigate the role of HMGA1, a chromatin remodeling factor abundantly expressed in many different cancers, in the regulation of cancer stem cells in ovarian cancer. Spheroid-forming cancer stem cells(More)
Prostate cancer is the most frequently diagnosed malignancy and the second leading cause of cancer mortality among men in the United States. Accumulating evidence suggests that lysophosphatidic acid (LPA) serves as an autocrine/paracrine mediator to affect initiation, progression and metastasis of prostate cancer. In the current study, we demonstrate that(More)
  • 1