Eugenio Martinelli

Learn More
Previous finding shown that the composition of the breath of patients with lung cancer contains information that could be used to detect the disease. These volatiles are mainly alkanes and aromatic compounds. Sensor arrays technology (electronic nose) proved to be useful to screen samples characterised by different headspace composition. Here we(More)
The use of gas sensor arrays as medical diagnosis instruments has been proposed several years ago. Since then, the idea has been proven for a limited number of diseases. The case of lung cancer is particularly interesting because it is supported by studies that have shown the correlation between the composition of breath and the disease. However, it is(More)
BACKGROUND Analysis of exhaled breath by biosensors discriminates between patients with asthma and healthy subjects. An electronic nose consists of a chemical sensor array for the detection of volatile organic compounds (VOCs) and an algorithm for pattern recognition. We compared the diagnostic performance of a prototype of an electronic nose with lung(More)
Breathomics, the multidimensional molecular analysis of exhaled breath, includes analysis of exhaled breath with gas-chromatography/mass spectrometry (GC/MS) and electronic noses (e-noses), and metabolomics of exhaled breath condensate (EBC), a non-invasive technique which provides information on the composition of airway lining fluid, generally by(More)
Background: Exhaled air contains many volatile organic compounds (VOCs) produced during human metabolic processes, in both healthy and pathological conditions. Analysis of breath allows studying the modifications of the profile of the exhaled VOCs due to different disease states, including chronic obstructive pulmonary disease (COPD). The early diagnosis of(More)
INTRODUCTION The early determination of serious pathologies has so far been an important issue in both the medical and social fields. The search for an instrument able to detect cancers has led to the consideration of the usage of chemicals of the human body, which carry, through its volatile compounds, information coming from or related to defined(More)
A novel strategy of data analysis for artificial taste and odour systems is presented in this work. It is demonstrated that using a supervised method also in feature extraction phase enhances fruit juice classification capability of sensor array developed at Warsaw University of Technology. Comparison of direct processing (raw data processed by Artificial(More)
BACKGROUND/PURPOSE The relationship between diseases and alterations of the airborne chemicals emitted from the body has been found in many different pathologies and in particular for various forms of cancer. Metabolism of cancer cells is greatly altered during their lifetime; then, modification of chemicals is supposed to be large around cancer tissues.(More)
Lung cancer diagnosis via breath analysis has to overcome some issues that can be summarized by two crucial points: (1) further developments for more performant breath sampling technologies; (2) discovering more differentiated volatile fingerprints to be ascribed to specific altered biological mechanisms. The present work merges these two aspects in a pilot(More)
The analysis of volatile compounds is an efficient method to appraise information about the chemical composition of liquids and solids. This principle is applied to several practical applications, such as food analysis where many important features (e.g. freshness) can be directly inferred from the analysis of volatile compounds. The same approach can also(More)