Eugenio Guglielmelli

Learn More
We investigated the event-related desynchronization (ERD) and synchronization (ERS) properties of cortical EEG rhythms in regions of interest (ROI) during the preparation of a 2D task for manual catching of a moving object. EEG signals were recorded through a 32-channel system in eleven healthy subjects during the interception task consisting of 2D catching(More)
User-teacher interaction during the learning and the execution of motor tasks requires the employment of various sensory channels, of which the tactile is one of the most natural and effective. In this paper we present a wearable robotic teacher for predefined motor tasks, consisting of a localization system and a wearable stimulation unit. This unit embeds(More)
OBJECTIVES The principle underlying this project is that, despite nervous reorganization following upper limb amputation, original pathways and CNS relays partially maintain their function and can be exploited for interfacing prostheses. Aim of this study is to evaluate a novel peripheral intraneural multielectrode for multi-movement prosthesis control and(More)
The paper proposes a biomechatronic approach to the design of an anthropomorphic artificial hand. The hand is conceived to be applied to prosthetics and biomedical robotics; hence, anthropomorphism is a fundamental requirement to be addressed both in the physical aspect and in the functional behavior. As regards the hand mechanics, a cable-driven(More)
In wearable robotics applications, actuators are required to satisfy strict constraints in terms of safety and controllability. The introduction of intrinsic compliance can help to meet both these requirements. However, the high torque and power necessary for robotic systems for gait assistance requires the use of custom elements, able to guarantee high(More)
This paper is focused on the multimodal analysis of patient performance, carried out by means of robotic technology and wearable sensors, and aims at providing quantitative measure of biomechanical and motion planning features of arm motor control following rehabilitation. Upper-limb robotic therapy was administered to 24 community-dwelling persons with(More)
BACKGROUND The use of robotic technology for assessment has the potential to provide therapists with objective, accurate, repeatable measurements of subject's functions. However, despite the increasing number of clinical studies examining the effect of robotic training on stroke rehabilitation, body functions and structures assessment is typically carried(More)
Hand loss is a highly disabling event that markedly affects the quality of life. To achieve a close to natural replacement for the lost hand, the user should be provided with the rich sensations that we naturally perceive when grasping or manipulating an object. Ideal bidirectional hand prostheses should involve both a reliable decoding of the user's(More)
The development of a new generation of hand prostheses that can ideally approximate the human 'physiological' performance in terms of movement dexterity and sensory feedback for amputees still poses many open research challenges. The most promising approaches aim at establishing a direct connection with either the central or the peripheral human nervous(More)
This paper addresses the field of humanoid and personal robotics—its objectives, motivations, and technical problems. The approach described in the paper is based on the analysis of humanoid and personal robots as an evolution from industrial to advanced and service robotics driven by the need for helpful machines, as well as a synthesis of the dream of(More)