Learn More
We investigated the event-related desynchronization (ERD) and synchronization (ERS) properties of cortical EEG rhythms in regions of interest (ROI) during the preparation of a 2D task for manual catching of a moving object. EEG signals were recorded through a 32-channel system in eleven healthy subjects during the interception task consisting of 2D catching(More)
This paper is focused on the multimodal analysis of patient performance, carried out by means of robotic technology and wearable sensors, and aims at providing quantitative measure of biomechanical and motion planning features of arm motor control following rehabilitation. Upper-limb robotic therapy was administered to 24 community-dwelling persons with(More)
The development of a new generation of hand prostheses that can ideally approximate the human 'physiological' performance in terms of movement dexterity and sensory feedback for amputees still poses many open research challenges. The most promising approaches aim at establishing a direct connection with either the central or the peripheral human nervous(More)
Recent research in the emerging field of phenomics aims at developing unobtrusive and ecological technologies which allow monitoring the behavior of infants and toddlers. Orientation tracking devices based on accelerometers and magnetometers represent a very promising technology since orientation in 3D space can be derived by solely relying upon the(More)
User-teacher interaction during the learning and the execution of motor tasks requires the employment of various sensory channels, of which the tactile is one of the most natural and effective. In this paper we present a wearable robotic teacher for predefined motor tasks, consisting of a localization system and a wearable stimulation unit. This unit embeds(More)
− The paper proposes an anticipation mechanism to improve the perception-action loop of robots interacting with real-world environments. According to recent neuroscientific findings, sensory anticipation can increase the effectiveness of perception-action loops and reduce the delays in obtaining the sensory information, especially in case of complex sensory(More)
In wearable robotics applications, actuators are required to satisfy strict constraints in terms of safety and controllability. The introduction of intrinsic compliance can help to meet both these requirements. However, the high torque and power necessary for robotic systems for gait assistance requires the use of custom elements, able to guarantee high(More)