Learn More
Various coding genes representing multiple functional categories are downregulated in blood mononuclear cells (BMC) of patients with sporadic Alzheimer disease (AD). Noncoding microRNAs (miRNA) regulate gene expression by degrading messages or inhibiting translation. Using BMC as a paradigm for the study of systemic alterations in AD, we investigated(More)
Understanding complex diseases such as sporadic Alzheimer disease (AD) has been a major challenge. Unlike the familial forms of AD, the genetic and environmental risks factors identified for sporadic AD are extensive. MicroRNAs are one of the major noncoding RNAs that function as negative regulators to silence or suppress gene expression via translational(More)
Circulating microRNAs, present either in the cellular component, peripheral blood mononuclear cells (PBMC), or in cell-free plasma, have emerged as biomarkers for age-dependent systemic, disease-associated changes in many organs. Previously, we have shown that microRNA (miR)-34a is increased in circulating PBMC of Alzheimer's disease (AD) patients. In the(More)
The decline in cognitive robustness with aging can be attributed to complex genetic pathways involving many cellular dysfunctions, cumulative over time, precipitating in frailty and loss of wellness in the elderly brain. The size and health of the neuronal cell population determines cognitive robustness in mammals. A transgenic mouse model over-expressing(More)
Although significant advances have been made in the study of the molecular mechanisms controlling brain aging, post-transcriptional gene regulation in normal brain aging has yet to be explored. Our lab recently reported that predominant microRNA up-regulation is observed in liver during aging, with key microRNAs predicted to target detoxification genes.(More)
Age-dependent loss of oxidative defense is well recognized in rodent models, although the control mechanism is still obscure; a few studies have shown how microRNAs, a non-coding RNA species, regulate the expression of their target genes at the post-transcriptional level. In the current study, miR-34a and miR-93 are observed to increase in middle- and(More)
Previous studies showed that infection of baby hamster kidney (BHK21-F) cells with the parainfluenza virus SV5 causes extensive cell fusion, that nuclei migrate in the syncytial cytoplasm and align in tightly-packed rows, and that microtubules are involved in nuclear movement and alignment. The role of microtubules, 10-nm filaments, and actin-containing(More)
Faithful maintenance of the genetic material is essential for cellular and organismal function. Thus the activity with which nuclear and mitochondrial DNA is repaired in somatic cells is likely to be an crucial determinant of maximal lifespan (MLS). However there has been controversy over both the actual rates of DNA repair in a variety of species, and the(More)
Treatment of thioglycolate-elicited macrophages with mouse beta-interferon markedly reduces pinocytosis of horseradish peroxidase and fluorescein isothiocyanate (FITC)-dextran but stimulates phagocytosis of IgG-coated sheep erythrocytes. Experiments with FITC-dextran have revealed that the overall decrease in pinocytosis is due to a nearly complete(More)
We evaluated pathomechanisms and systemic manifestations of Alzheimer disease (AD), an aging-related dementing neurodegenerative disorder, by expression profiling. Blood mononuclear cell (BMC) transcriptomes of sporadic AD subjects and aged-matched normal elderly controls (NEC) were compared using the human NIA microarray. Relative to the NEC samples, the(More)