Eugenia Moskvina

Learn More
Stress response elements (STREs, core consensus AG4 or C4T) have been demonstrated previously to occur in the upstream region of a number of genes responsive to induction by a variety of stress signals. This stress response is mediated by the homologous transcription factors Msn2p and Msn4p, which bind specifically to STREs. Double mutants (msn2 msn4)(More)
The pathway involved in UTP-evoked noradrenaline release was investigated in cultures of rat superior cervical ganglia. Northern blots revealed an age-related increase in levels of mRNA for P2Y6 receptors in cultures obtained at postnatal days 1 and 5, respectively, but no change in transcripts for P2Y1 and P2Y2. Likewise, UTP-evoked overflow of previously(More)
Activation of P2Y receptors by released nucleotides subserves important autocrine-paracrine functions in various non-neural tissues. To investigate how P2Y receptors are activated in a neuronal environment, we used PC12 cells in which nucleotides were found to elicit increases in inositol phosphates via P2Y2 and decreases in cAMP via P2Y12 receptors.(More)
A variety of stress factors induces transcription via the stress response element (STRE) present in control regions of a number of genes of the yeast Saccharomyces cerevisiae. Induction of transcription involves nuclear translocation of the STRE-binding transcription activators Msn2p and Msn4p. The primary cellular events triggering this translocation are(More)
P2Y receptors inhibiting adenylyl cyclase have been found in blood platelets, glioma cells, and endothelial cells. In platelets and glioma cells, these receptors were identified as P2Y(12). Here, we have used PC12 cells to search for adenylyl cyclase inhibiting P2Y receptors in a neuronal cellular environment. ADP and ATP (0.1 - 100 microM) left basal(More)
Bradykinin has long been known to excite sympathetic neurons via B(2) receptors, and this action is believed to be mediated by an inhibition of M-currents via phospholipase C and inositol trisphosphate-dependent increases in intracellular Ca(2+). In primary cultures of rat superior cervical ganglion neurons, bradykinin caused an accumulation of inositol(More)
  • 1