Learn More
Gastric cancers with mismatch repair (MMR) inactivation are characterised by microsatellite instability (MSI). In this study, the transcriptional profile of 38 gastric cancers with and without MSI was analysed. Unsupervised analysis showed that the immune and apoptotic gene networks efficiently discriminated these two cancer types. Hierarchical clustering(More)
BACKGROUND AND METHODS We have reviewed and pooled data from published studies to evaluate the relationship between microsatellite instability (MSI) and colorectal cancer (CRC) prognosis. Thirty-one eligible studies reporting survival in 12782 patients characterised for MSI were pooled using a fixed- or random-effects model. RESULTS The summary odds ratio(More)
Two distinct pathways for completion of base excision repair (BER) have been discovered in eukaryotes: the DNA polymerase beta (Pol beta)-dependent short-patch pathway that involves the replacement of a single nucleotide and the long-patch pathway that entails the resynthesis of 2-6 nucleotides and requires PCNA. We have used cell extracts from Pol(More)
Risk factors for gastric cancer (GC) include inter-individual variability in the inflammatory response to Helicobacter pylori infection, in the ability of detoxifying DNA reactive species and repairing DNA damage generated by oxidative stress and dietary carcinogens. To evaluate the association between polymorphic DNA repair genes and GC risk, a(More)
Abasic sites (apurinic/apyrimidinic, AP sites) are the most common DNA lesions generated by both spontaneous and induced base loss. In a previous study we have shown that circular plasmid molecules containing multiple AP sites are efficiently repaired by Chinese hamster extracts in an in vitro repair assay. An average patch size of 6.6 nucleotides for a(More)
Glutathione S-Transferases (GSTs) are a family of phase II enzymes involved in the detoxification of potential carcinogens and provided of a strong antioxidant function by neutralizing electrophiles and free radicals. The GSTM1 and GSTT1 isoenzymes exhibit deletion polymorphisms, resulting in a lack of activity, and the null genotypes have been associated(More)
A large variety of DNA lesions induced by environmental agents or arising as an outcome of cellular metabolism are counteracted by a complex network of proteins that belong to the base excision repair/single strand break repair (BER/SSBR) processes. No matter whether the initial lesions are modified DNA bases or single-strand breaks with non-conventional(More)
Radical oxygen species (ROS) generate various modified DNA bases. Among them 8-oxo-7,8-dihydroguanine (8oxoG) is the most abundant and seems to play a major role in mutagenesis and in carcinogenesis. 8oxoG is removed from DNA by the specific glycosylase OGG1. An additional post-replication repair is needed to correct the 8oxoG/A mismatches that are produced(More)
SUMMARY Nitrate is a naturally occurring compound that is part of the nitrogen cycle, as well as an approved food additive. It plays an important role in the nutrition and function of plants. Nitrate is an important component of vegetables due to its potential for accumulation; this can be affected by a number of biotic and abiotic factors. Higher levels of(More)