Eugenia Dogliotti

Learn More
DNA polymerase (Pol) beta null mouse embryonic fibroblasts provide a useful cell system to investigate the effects of alterations in base excision repair (BER) on genome stability. These cells are characterized by hypersensitivity to the cytotoxic effects of methyl methanesulfonate (MMS) and by decreased repair of the MMS-induced DNA single strand breaks(More)
Mismatch repair (MMR) corrects replication errors. It requires the MSH2, MSH6, MLH1, and PMS2 proteins which comprise the MutSalpha and MutLalpha heterodimers. Inactivation of MSH2 or MLH1 in human tumors greatly increases spontaneous mutation rates. Oxidation produces many detrimental DNA alterations against which cells deploy multiple protective(More)
It has been hypothesized that a replication associated repair pathway operates on base damage and single strand breaks (SSB) at replication forks. In this study, we present the isolation from the nuclei of human cycling cells of a multiprotein complex containing most of the essential components of base excision repair (BER)/SSBR, including APE1, UNG2, XRCC1(More)
Among the different base excision repair pathways known, the long patch base excision repair of apurinic/apyrimidinic sites is an important mechanism that requires proliferating cell nuclear antigen. We have reconstituted this pathway using purified human proteins. Our data indicated that efficient repair is dependent on six components including AP(More)
BACKGROUND Prostate stem cell antigen (PSCA) is a glycosylphosphatidylinositol (GPI) anchored protein expressed not only in prostate but also in pancreas and bladder cancer as shown by immunohistochemistry and mRNA analysis. It has been targeted by monoclonal antibodies in preclinical animal models and more recently in a clinical trial in prostate cancer(More)
Base excision repair (BER) is the main pathway for repair of DNA damage in mammalian cells. This pathway leads to the formation of DNA repair intermediates which, if still unsolved, cause cell lethality and mutagenesis. To characterize mutations induced by BER intermediates in mammalian cells, an SV-40 derived shuttle vector was constructed carrying a(More)
Loss of ataxia telangiectasia mutated (ATM) kinase, a key factor of the DNA damage response (DDR) pathway, causes the cancer predisposing and neurodegenerative syndrome ataxia-telangiectasia (A-T). To investigate the mechanisms of neurodegeneration, we have reprogrammed fibroblasts from ATM-null A-T patients and normal controls to pluripotency(More)
Several lines of evidence indicate that differences in DNA repair capacity are an important source of variability in cancer risk. However, traditional assays for measurement of DNA repair activity in human samples are laborious and time-consuming. DNA glycosylases are the first step in base excision repair of a variety of modified DNA bases. Here, we(More)
Although the mechanisms controlling skeletal muscle homeostasis have been identified, there is a lack of knowledge of the integrated dynamic processes occurring during myogenesis and their regulation. Here, metabolism, autophagy and differentiation were concomitantly analyzed in mouse muscle satellite cell (MSC)-derived myoblasts and their cross-talk(More)
Autophagy undergoes a fine tuning during tissue differentiation and organ remodeling in order to meet the dynamic changes in the metabolic needs. While the involvement of autophagy in the homeostasis of mature muscle tissues has been intensively studied, no study has so far addressed the regulation of autophagy in relation to the metabolic state during the(More)