Eugenia Corvera Poiré

Learn More
A one-sided phase-field model is proposed to study the dynamics of unstable interfaces of Hele-Shaw flows in the high viscosity contrast regime. The corresponding macroscopic equations are obtained by means of an asymptotic expansion from the phase-field model. Numerical integrations of the phase-field model in a rectangular Hele-Shaw cell reproduce finger(More)
We analyze the effect that the geometrical place of anastomosis in the circulatory tree has on blood flow. We introduce an idealized model that consists of a symmetric network for the arterial and venous vascular trees. We consider that the network contains a viscoelastic fluid with the rheological characteristics of blood, and analyze the network(More)
Understanding tumor induced angiogenesis is a challenging problem with important consequences for diagnosis and treatment of cancer. Recently, strong evidences suggest the dual role of endothelial cells on the migrating tips and on the proliferating body of blood vessels, in consonance with further events behind lumen formation and vascular patterning. In(More)
We consider a simple model to give a plausible mechanical explanation of what are the actual resting heart rates of mammals optimized for. We study what is the optimal frequency for a viscoelastic fluid circulating in a pulsatile way through a network of tubes and conclude that the heart rate is not optimized to transport blood through the whole net.(More)
We study a low-amplitude, long-wavelength lateral instability of the Saffman-Taylor finger by means of a phase-field model. We observe such an instability in two situations in which small dynamic perturbations are overimposed to a constant pressure drop. We first study the case in which the perturbation consists of a single oscillatory mode and then a case(More)
Rare events appear in a wide variety of phenomena such as rainfall, floods, earthquakes, and risk. We demonstrate that the stochastic behavior induced by the natural roughening present in standard microchannels is so important that the dynamics for the advancement of a water front displacing air has plenty of rare events. We observe that for low pressure(More)
We make an experimental characterization of the effect that static disorder has on the shape of a normal Saffman-Taylor finger. We find that static noise induces a small amplitude and long wavelength instability on the sides of the finger. Fluctuations on the finger sides have a dominant wavelength, indicating that the system acts as a selective amplifier(More)
We relate vascular network structure to hemodynamics after vessel obstructions. We consider tree-like networks with a viscoelastic fluid with the rheological characteristics of blood. We analyze the network hemodynamic response, which is a function of the frequencies involved in the driving, and a measurement of the resistance to flow. This response(More)
Haemodynamic simulations using one-dimensional (1-D) computational models exhibit many of the features of the systemic circulation under normal and diseased conditions. We propose a novel linear 1-D dynamical theory of blood flow in networks of flexible vessels that is based on a generalized Darcy’s model and for which a full analytical solution exists in(More)
  • 1