Learn More
Radial, space-filling visualizations can be useful for depicting information hierarchies, but they suffer from one major problem. As the hierarchy grows in size, many items become small, peripheral slices that are difficult to distinguish. We have developed three visualization/interaction techniques that provide flexible browsing of the display. The(More)
Designing rotational symmetries on surfaces is a necessary task for a wide variety of graphics applications, such as surface parameterization and remeshing, painterly rendering and pen-and-ink sketching, and texture synthesis. In these applications, the <i>topology</i> of a rotational symmetry field such as <i>singularities</i> and <i>separatrices</i> can(More)
Surface parameterization is necessary for many graphics tasks: texture-preserving simplification, remeshing, surface painting, and precomputation of solid textures. The stretch caused by a given parameterization determines the sampling rate on the surface. In this article, we present an automatic parameterization method for segmenting a surface into patches(More)
Vector field design on surfaces is necessary for many graphics applications: example-based texture synthesis, nonphotorealistic rendering, and fluid simulation. For these applications, singularities contained in the input vector field often cause visual artifacts. In this article, we present a vector field design system that allows the user to create a wide(More)
While hexahedral mesh elements are preferred by a variety of simulation techniques, constructing quality all-hex meshes of general shapes remains a challenge. An attractive hex-meshing approach, often referred to as submapping, uses a low distortion mapping between the input model and a PolyCube (a solid formed from a union of cubes), to transfer a regular(More)
Microalgae have been widely reported as a promising source of biofuels, mainly based on their high areal productivity of biomass and lipids as triacylglycerides and the possibility for cultivation on non-arable land. The isolation and selection of suitable strains that are robust and display high growth and lipid accumulation rates is an important(More)
Design and control of vector fields is critical for many visualization and graphics tasks such as vector field visualization, fluid simulation, and texture synthesis. The fundamental qualitative structures associated with vector fields are fixed points, periodic orbits, and separatrices. In this paper, we provide a new technique that allows for the(More)
This paper addresses the problem of interactively modeling large street networks. We introduce an intuitive and flexible modeling framework in which a user can create a street network from scratch or modify an existing street network. This is achieved through designing an underlying tensor field and editing the graph representing the street network. The(More)
This sketch introduces <i>hexagonal global parameterization</i>, a new type of periodic global parameterization that is ideal for tiling surfaces with patterns of six-fold rotational symmetries, i.e., 6-RoSy's [Palacios and Zhang 2007]. Being one of the two most fundamental rotational symmetries that are compatible with translational symmetries in the(More)
Rotational symmetries (RoSys) have found uses in several computer graphics applications, such as global surface parameterization, geometry remeshing, texture and geometry synthesis, and nonphotorealistic visualization of surfaces. The visualization of N-way rotational symmetry (N-RoSy) fields is a challenging problem due to the ambiguities in the N(More)