Learn More
Entanglement is considered to be one of the most profound features of quantum mechanics. An entangled state of a system consisting of two subsystems cannot be described as a product of the quantum states of the two subsystems. In this sense, the entangled system is considered inseparable and non-local. It is generally believed that entanglement is usually(More)
Quantum teleportation of optical coherent states was demonstrated experimentally using squeezed-state entanglement. The quantum nature of the achieved teleportation was verified by the experimentally determined fidelity F exp ϭ 0.58 Ϯ 0.02, which describes the match between input and output states. A fidelity greater than 0.5 is not possible for coherent(More)
The information carrier of today's communications, a weak pulse of light, is an intrinsically quantum object. As a consequence, complete information about the pulse cannot be perfectly recorded in a classical memory, even in principle. In the field of quantum information, this has led to the long-standing challenge of how to achieve a high-fidelity transfer(More)
Quantum teleportation is an important ingredient in distributed quantum networks, and can also serve as an elementary operation in quantum computers. Teleportation was first demonstrated as a transfer of a quantum state of light onto another light beam; later developments used optical relays and demonstrated entanglement swapping for continuous variables.(More)
During the past decade the interaction of light with multi-atom ensembles has attracted a lot of attention as a basic building block for quantum information processing and quantum state engineering. The field started with the realization that optically thick free space ensembles can be efficiently interfaced with quantum optical fields. By now the atomic(More)
Squeezing of quantum fluctuations by means of entanglement is a well-recognized goal in the field of quantum information science and precision measurements. In particular, squeezing the fluctuations via entanglement between 2-level atoms can improve the precision of sensing, clocks, metrology, and spectroscopy. Here, we demonstrate 3.4 dB of metrologically(More)
Low-loss transmission and sensitive recovery of weak radio-frequency and microwave signals is a ubiquitous challenge, crucial in radio astronomy, medical imaging, navigation, and classical and quantum communication. Efficient up-conversion of radio-frequency signals to an optical carrier would enable their transmission through optical fibres instead of(More)