Eugene P. Petrov

Learn More
The Saffman-Delbrück approximation is commonly used in biophysics to relate the membrane inclusion size to its translational diffusion coefficient and membrane viscosity. However, this approximation has a restricted validity range, and its application to determination of inclusion sizes from diffusion data may in certain cases lead to unreliable results. At(More)
It is recognized that chlorin e6-polyvinylpyrrolidone (Ce6-PVP) formulations are characterized by a high efficacy in photodynamic therapy of malignant tumors. Currently, a commercially available formulation of this type is Photolon (Fotolon) with Ce6:PVP=1:1 (w/w) and the weight-average molecular weight of PVP is 1.2x10(4). To gain a better understanding of(More)
We address the relationship between membrane microheterogeneity and anomalous subdiffusion in cell membranes by carrying out Monte Carlo simulations of two-component lipid membranes. We find that near-critical fluctuations in the membrane lead to transient subdiffusion, while membrane-cytoskeleton interaction strongly affects phase separation, enhances(More)
Giant unilamellar vesicles (GUVs) represent a versatile in vitro system widely used to study properties of lipid membranes and their interaction with biomacromolecules and colloids. Electroformation with indium tin oxide (ITO) coated coverslips as electrodes is a standard approach to GUV production. In the case of cationic GUVs, however, application of this(More)
Evidence has accumulated that the voltage-dependent anion channel (VDAC), located on the outer membrane of mitochondria, plays a central role in apoptosis. The involvement of VDAC oligomerization in apoptosis has been suggested in various studies. However, it still remains unknown how exactly VDAC supramolecular assembly can be regulated in the membrane.(More)
Time-resolved fluorescence of 1,8-anilinonaphthalene sulfonate (1,8-ANS) fluorescent probe bound to intact human oxyhemoglobin (HbO2) is investigated. Fluorescence emission spectra of 1,8-ANS in a potassium buffer solution (pH 7.4) of HbO2 undergo a substantial blue shift during first 6 ns after pulsed optical excitation at 337.1 nm. Nonexponential(More)
We use simultaneous observation of translational and rotational Brownian motion of domains in lipid membranes to test the hydrodynamics-based theory for the viscous drag on the membrane inclusion. We find that translational and rotational diffusion coefficients of micrometer-sized solid (gel-phase) domains in giant unilamellar vesicles showing fluid–gel(More)
Fluorescence correlation spectroscopy with total internal reflection excitation (TIR-FCS) is a promising method with emerging biological applications for measuring binding dynamics of fluorescent molecules to a planar substrate as well as diffusion coefficients and concentrations at the interface. Models for correlation functions proposed so far are rather(More)
We study the effect of a minimal cytoskeletal network formed on the surface of giant unilamellar vesicles by the prokaryotic tubulin homolog, FtsZ, on phase separation in freestanding lipid membranes. FtsZ has been modified to interact with the membrane through a membrane targeting sequence from the prokaryotic protein MinD. FtsZ with the attached membrane(More)
Fluorescence kinetics of perylene molecules in hemoglobin-free human erythrocyte membranes is investigated as a function of the refractive index of the external medium varied by adjusting the concentration of sorbitol or sucrose in an aqueous suspension of erythrocyte ghosts. It has been found that the fluorescence of perylene in erythrocyte ghosts decays(More)