Eugene N. Muratov

Learn More
This work is devoted to the application of the random forest approach to QSAR analysis of aquatic toxicity of chemical compounds tested on Tetrahymena pyriformis. The simplex representation of the molecular structure approach implemented in HiT QSAR Software was used for descriptors generation on a two-dimensional level. Adequate models based on simplex(More)
The estimation of accuracy and applicability of QSAR and QSPR models for biological and physicochemical properties represents a critical problem. The developed parameter of "distance to model" (DM) is defined as a metric of similarity between the training and test set compounds that have been subjected to QSAR/QSPR modeling. In our previous work, we(More)
This article is about the hierarchical quantitative structure-activity relationship technology (HiT QSAR) based on the Simplex representation of molecular structure (SiRMS) and its application for different QSAR/QSP(property)R tasks. The essence of this technology is a sequential solution (with the use of the information obtained on the previous steps) to(More)
Prior to using a quantitative structure activity relationship (QSAR) model for external predictions, its predictive power should be established and validated. In the absence of a true external data set, the best way to validate the predictive ability of a model is to perform its statistical external validation. In statistical external validation, the(More)
Schistosomiasis is a neglected tropical disease that affects millions of people worldwide. Thioredoxin glutathione reductase of Schistosoma mansoni (SmTGR) is a validated drug target that plays a crucial role in the redox homeostasis of the parasite. We report the discovery of new chemical scaffolds against S. mansoni using a combi-QSAR approach followed by(More)
There is a growing public concern about the lack of reproducibility of experimental data published in peer-reviewed scientific literature. Herein, we review the most recent alerts regarding experimental data quality and discuss initiatives taken thus far to address this problem, especially in the area of chemical genomics. Going beyond just acknowledging(More)
We introduce a simple MODelability Index (MODI) that estimates the feasibility of obtaining predictive QSAR models (correct classification rate above 0.7) for a binary data set of bioactive compounds. MODI is defined as an activity class-weighted ratio of the number of nearest-neighbor pairs of compounds with the same activity class versus the total number(More)
We report on the prediction accuracy of ligand-based (2D QSAR) and structure-based (MedusaDock) methods used both independently and in consensus for ranking the congeneric series of ligands binding to three protein targets (UK, ERK2, and CHK1) from the CSAR 2011 benchmark exercise. An ensemble of predictive QSAR models was developed using known binders of(More)
The present study applies the Hierarchical Technology for Quantitative Structure-Activity Relationships (HiT QSAR) for (i) evaluation of the influence of the characteristics of 28 nitroaromatic compounds (some of which belong to a widely known class of explosives) as to their toxicity; (ii) prediction of toxicity for new nitroaromatic derivatives; (iii)(More)
  • 1