Learn More
Oncogenic hyperplasia is the first and inevitable stage of formation of a (solid) tumor. This stage is also the core of many other proliferative diseases. The present work proposes the first minimal model that combines homeorhesis with oncogenic hyperplasia where the latter is regarded as a genotoxically activated homeorhetic dysfunction. This dysfunction(More)
Many features of living systems prevent application of fundamental statistical mechanics (FSM) to study these systems. The present work focuses on some of these features. By discussing all the basic approaches of FSM, the work formulates the extension of the kinetic theory paradigm (based on the reduced one-particle distribution function) that exhibits all(More)
At low temperatures, proteins exist in a glassy state, a state that has no conformational flexibility and shows no biological functions. In a hydrated protein, at temperatures greater-- similar 220 K, this flexibility is restored, and the protein is able to sample more conformational substates, thus becoming biologically functional. This "dynamical"(More)
Cyanobacteria are prokaryotes that can use photosynthesis to convert sunlight into cellular fuel. Knowledge of the organization of the membrane systems in cyanobacteria is critical to understanding the metabolic processes in these organisms. We examined the wild-type strain of Synechocystis sp. PCC 6803 and a series of mutants with altered light-harvesting(More)
Despite extensive efforts in experimental and computational studies, the microscopic understanding of dynamics of biological macromolecules remains a great challenge. It is known that hydrated proteins, DNA and RNA, exhibit a so-called "dynamic transition." It appears as a sharp rise of their mean-squared atomic displacements r2 at temperatures above(More)
Our quasielastic neutron-scattering experiments and molecular-dynamics simulations probing surface water on rutile (TiO2) have demonstrated that a sufficiently high hydration level is a prerequisite for the temperature-dependent crossover in the nanosecond dynamics of hydration water. Below the monolayer coverage of mobile surface water, a weak temperature(More)
We used high-resolution quasielastic neutron scattering spectroscopy to study the single-particle dynamics of water molecules on the surface of hydrated DNA samples. Both H(2)O and D(2)O hydrated samples were measured. The contribution of scattering from DNA is subtracted out by taking the difference of the signals between the two samples. The measurement(More)
The diffusive dynamics of hydration water in lysozyme is studied by high-resolution incoherent quasielastic neutron scattering spectroscopy and molecular dynamics (MD) simulations in a temperature range of 290 K<T<380 K. The hydration level of the protein powder sample is kept at h=0.35 gram of water per gram of dry protein to provide monolayer of water(More)
Many biosystems are complex mixtures of disparate biofluids. To study contact and transport phenomena in these mixtures, one has to apply much information on the biofluids which are components of the mixtures. A lot of the corresponding data can be extracted by means of experiments. However, it is not always easy to obtain experimental results on rather(More)
The dynamics of RNA within the β-relaxation region of 10 ps to 1 ns is crucial to its biological function. Because of its simpler chemical building blocks and the lack of the side methyl groups, faster relaxational dynamics of RNA compared to proteins can be expected. However, the situation is actually opposite. In this work, the relaxational dynamics of(More)