Learn More
We have generated mice that carry a germline mutation in which a large portion of the RAG-2 coding region is deleted. Homozygous mutants are viable but fail to produce mature B or T lymphocytes. Very immature lymphoid cells were present in primary lymphoid organs of mutant animals as defined by surface marker analyses and Abelson murine leukemia virus(More)
d) mice were from Taconic. Batf −/− mice on 129S6/SvEv, C57BL/6, and BALB/c background were used. Batf −/− mice on a 129S6/SvEv background were previously generated 2. Batf −/− mice were backcrossed five generation to the C57BL/6 background and eight generation to the BALB/c background. Aicda −/− mice were obtained from T. Honjo had reviewed and approved(More)
Cells maintain the integrity of their genome through an intricate network of repair systems that recognize and remove lesions from DNA. The only known site-directed recombination process in vertebrates is the V(D)J recombination of lymphocyte antigen receptor genes. A large panel of cell lines deficient in DNA repair were tested for the ability to perform(More)
The immunoglobulin heavy-chain (IgH) gene locus undergoes radial repositioning within the nucleus and locus contraction in preparation for gene recombination. We demonstrate that IgH locus conformation involves two levels of chromosomal compaction. At the first level, the locus folds into several multilooped domains. One such domain at the 3' end of the(More)
Accessibility of chromosomal recombination signal sequences to the RAG protein complex is known to be essential for V(D)J recombination at Ag receptor loci in vivo. Previous studies have addressed the roles of cis-acting regulatory elements and germline transcription in the covalent modification of nucleosomes at Ag receptor loci. However, a detailed(More)
V(D)J recombination assembles antigen receptor genes in a well-defined order during lymphocyte development. This sequential process has long been understood in the context of the accessibility model, which states that V(D)J recombination is regulated by controlling the ability of the recombination machinery to gain access to its chromosomal substrates.(More)
The high-mobility-group (HMG) SSRP1 protein is a member of a conserved chromatin-remodeling complex (FACT/DUF/CP) implicated in DNA replication, basal and regulated transcription, and DNA repair. To assist in the functional analysis of SSRP1, the Ssrp1 gene was targeted in murine embryonic stem cells, and the mutation was introduced into the germ line.(More)
Gene regulation relies on dynamic changes in three-dimensional chromatin conformation, which are shaped by composite regulatory and architectural elements. However, mechanisms that govern such conformational switches within chromosomal domains remain unknown. We identify a novel mechanism by which cis-elements promote long-range interactions, inducing(More)
Innate lymphoid cells (ILCs) serve as sentinels in mucosal tissues, sensing release of soluble inflammatory mediators, rapidly communicating danger via cytokine secretion, and functioning as guardians of tissue homeostasis. Although ILCs have been extensively studied in model organisms, little is known about these "first responders" in humans, especially(More)
The stepwise process of Ag receptor gene assembly, termed V(D)J recombination, is coordinated during lymphocyte development by sweeping changes in chromatin that permit or deny access to a single recombinase enzyme. We now show that switching/sucrose nonfermenting (SWI/SNF) chromatin remodeling complexes are recruited to the Igh locus by an(More)