Eugene M. Luks

Learn More
Many reasoning and optimization problems exhibit symmetries. Previous work has shown how special purpose algorithms can make use of these symmetries to simplify reasoning. We present a general scheme whereby symmetries are exploited by adding \symmetry-breaking" predicates to the theory. Our approach can be used on any propo-sitional satissability problem,(More)
Suppose we are given a set of generators for a group G of permutations of a colored set A. The color automorphism problem for G involves finding generators for the subgroup of G which stabilizes the color classes. Testing isomorphism of graphs of valence ≤ t is polynomial-time reducible to the color automorphism problem for groups with small simple(More)
We announce an algebraic approach to the problem of assigning <italic>canonical forms</italic> to graphs. We compute canonical forms and the associated canonical labelings (or renumberings) in polynomial time for graphs of bounded valence, in moderately exponential, exp(n<supscrpt>&#189; + &ogr;(1)</supscrpt>),time for general graphs, in subexponential,(More)
A permutation group on n letters may always be represented by a small set of generators, even though its size may be exponential in n. We show that it is practical to use such a representation since many problems such as membership testing, equality testing, and inclusion testing are decidable in polynomial time. In addition, we demonstrate that the normal(More)
We address the graph isomorphism problem and related fundamental complexity problems of computational group theory. The main results are these: A1. A polynomial time algorithm to test simplicity and find composition factors of a given permutation group (COMP). A2. A polynomial time algorithm to find elements of given prime order p in a permutation group of(More)
We develop parallel techniques for dealing with permutation group problems. These are most effective on the class of groups with bounded non-abelian composition factors. For this class, we place in NC problems such as membership testing, finding the center and composition factors, and, of particular significance, finding pointwise-set-stabilisers. The last(More)
We consider the solvability of the equation k Y i=1Aixi = B and generalizations, where the Ai and B are given commuting matrices over an algebraic number eld F . In the semigroup membership problem, the variables xi are constrained to be nonnegative integers. While this problem is NP-complete for variable k, we give a polynomial time algorithm if k is xed.(More)
We show that the basic problems of permutation group manipulation admit efficient parallel solutions. Given a permutation group G by a list of generators, we find a set of NC-efficient strong generators in NC. Using this, we show, that the following problems are in NC: membership in G; determining the order of G; finding the center of G; finding a(More)