Eugene J. Szymkowiak

Learn More
Abscission is a universal and dynamic process in plants whereby organs such as leaves, flowers and fruit are shed, both during normal development, and in response to tissue damage and stress. Shedding occurs by separation of cells in anatomically distinct regions of the plant, called abscission zones (AZs). During abscission, the plant hormone ethylene(More)
The jointless mutation of tomato results in the formation of flower pedicels that lack an abscission zone and inflorescence meristems that revert to vegetative growth. We have analyzed periclinal chimeras and mericlinal sectors of jointless and wild-type tissue to determine how cells in different meristem layers (L1, L2, and L3) and their derivatives(More)
Unlike monopodial plants, in which flowering terminates growth of a shoot, plants exhibiting sympodial shoot architecture maintain the potential for indeterminate growth even after converting to floral development. This vegetative indeterminacy is conferred by a special type of axillary meristem, the sympodial meristem, which exhibits precocious but(More)
The generation and analysis of plant chimeras and other genetic mosaics have been used to deduce patterns of cell division and cell fate during plant development and to demonstrate the existence of clonally distinct cell lineages in the shoot meristems of higher plants. Cells derived from these lineages do not have fixed developmental fates but rely on(More)
Cell-cell interactions are important during plant development. We have generated periclinal chimeras between plants that differ in the number of carpels per flower to determine the roles of cells occupying specific positions in the floral meristem in determining the number of carpels initiated. Intraspecific chimeras were generated between tomato(More)
Flowers developing on tomato (Lycopersicon esculentum) plants homozygous for the lateral suppressor (ls) mutation lack petals. Scanning electron micrographs revealed that in ls plants no second whorl organs were initiated. The initiation of first, third, and fourth whorl organs were unaffected by this mutation. To investigate interactions between the cells(More)
We have isolated a new mutation, wandering carpel (wcr), which affects polarity of the maize flower, altering its orientation or converting it from zygomorphy to radial symmetry. These changes result in the development of embryos on locations other than the normal, acropetal side of the kernel. More than two carpels can develop into silks. More rarely, two(More)
Graft chimeras were generated using Lycopersicon pennellii and L. esculentum to determine the contribution of the three meristem layers (L1, L2, and L3) to trichome density, sugar ester production, and aphid resistance. Sugar esters, in the form of triacylglucoses, have been implicated in the aphid resistance of pennellii. One chimera possessed the(More)
  • 1