Learn More
The quantum spin Hall (QSH) phase is a time reversal invariant electronic state with a bulk electronic band gap that supports the transport of charge and spin in gapless edge states. We show that this phase is associated with a novel Z2 topological invariant, which distinguishes it from an ordinary insulator. The Z2 classification, which is defined for time(More)
We study the effects of spin orbit interactions on the low energy electronic structure of a single plane of graphene. We find that in an experimentally accessible low temperature regime the symmetry allowed spin orbit potential converts graphene from an ideal two-dimensional semimetallic state to a quantum spin Hall insulator. This novel electronic state of(More)
We study three-dimensional generalizations of the quantum spin Hall (QSH) effect. Unlike two dimensions, where a single Z2 topological invariant governs the effect, in three dimensions there are 4 invariants distinguishing 16 phases with two general classes: weak (WTI) and strong (STI) topological insulators. The WTI are like layered 2D QSH states, but are(More)
– Samples of single-wall carbon nanotubes containing tubes with an " armchair " wrapping have been produced and exhibit metallic behavior with an intrinsic resistivity which increases approximately linearly with temperature over a wide temperature range. Here we study the coupling of the conduction electrons to long-wavelength torsional shape fluctuations,(More)
We show that the pseudorelativistic physics of graphene near the Fermi level can be extended to three dimensional (3D) materials. Unlike in phase transitions from inversion symmetric topological to normal insulators, we show that particular space groups also allow 3D Dirac points as symmetry protected degeneracies. We provide criteria necessary to identify(More)
Recent fluorescence spectroscopy experiments on single wall carbon nanotubes reveal substantial deviations of observed absorption and emission energies from predictions of noninteracting models of the electronic structure. Nonetheless, the data for nearly armchair nanotubes obey a nonlinear scaling relation as a function of the tube radius R. We show that(More)
Electronic states at domain walls in bilayer graphene are studied by analyzing their four- and two-band continuum models, by performing numerical calculations on the lattice, and by using quantum geometric arguments. The continuum theories explain the distinct electronic properties of boundary modes localized near domain walls formed by interlayer electric(More)
Graphene-derived nanomaterials are emerging as ideal candidates for postsilicon electronics. Elucidating the electronic interaction between an insulating substrate and few-layer graphene (FLG) films is crucial for device applications. Here, we report electrostatic force microscopy (EFM) measurements revealing that the FLG surface potential increases with(More)