Eugene J. Leys

Learn More
Comparing bacterial 16S rDNA sequences to GenBank and other large public databases via BLAST often provides results of little use for identification and taxonomic assignment of the organisms of interest. The human microbiome, and in particular the oral microbiome, includes many taxa, and accurate identification of sequence data is essential for studies of(More)
Dental caries in very young children may be severe, result in serious infection, and require general anesthesia for treatment. Dental caries results from a shift within the biofilm community specific to the tooth surface, and acidogenic species are responsible for caries. Streptococcus mutans, the most common acid producer in caries, is not always present(More)
Methotrexate-resistant cells, which contain a 500-fold amplification of dihydrofolate reductase (DHFR) genes, were used as a model system for studying the regulation of DHFR gene expression during growth stimulation. We have shown that a threefold increase in DHFR mRNA levels following growth stimulation results from a corresponding increase in DHFR mRNA(More)
The uncultivated bacterium Tannerella BU063 (oral taxon 286) is the closest relative to the periodontal pathogen Tannerella forsythia, but is not disease-associated itself. Using a single cell genomics approach, we isolated 12 individual BU063 cells by flow cytometry, and we amplified and sequenced their genomes. Comparative analyses of the assembled(More)
Despite a long history of investigation, many bacteria associated with the human oral cavity have yet to be cultured. Studies that correlate the presence or abundance of uncultured species with oral health or disease highlight the importance of these community members. Thus, we sequenced several single-cell genomic amplicons from Desulfobulbus and(More)
The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen-host interactions of a wide variety of bacteria. These studies have revealed that(More)
BACKGROUND Periodontitis results from the interaction between a subgingival biofilm and host immune response. Changes in biofilm composition are thought to disrupt homeostasis between the host and subgingival bacteria resulting in periodontal damage. Chronic systemic inflammatory disorders have been shown to affect the subgingival microbiota and clinical(More)
  • 1