Eugene I. Shakhnovich

Learn More
A three-dimensional lattice model of a protein is used to investigate the properties required for its folding to the native state. The polypeptide chain is represented as a 27 bead heteropolymer whose lowest energy (native) state can be determined by an exhaustive enumeration of all fully compact conformations. A total of 200 sequences with random(More)
Here, we provide an analysis of molecular evolution of five of the most populated protein folds: immunoglobulin fold, oligonucleotide-binding fold, Rossman fold, alpha/beta plait, and TIM barrels. In order to distinguish between "historic", functional and structural reasons for amino acid conservations, we consider proteins that acquire the same fold and(More)
The statistical mechanics of protein folding implies that the best-folding proteins are those that have the native conformation as a pronounced energy minimum. We show that this can be obtained by proper selection of protein sequences and suggest a simple practical way to find these sequences. The statistical mechanics of these proteins with optimized(More)
The number of all possible conformations of a polypeptide chain is too large to be sampled exhaustively. Nevertheless, protein sequences do fold into unique native states in seconds (the Levinthal paradox). To determine how the Levinthal paradox is resolved, we use a lattice Monte Carlo model in which the global minimum (native state) is known. The(More)
In this paper we introduce a novel method of deriving a pairwise potential for protein folding. The potential is obtained by an optimization procedure that simultaneously maximizes thermodynamic stability for all proteins in the database. When applied to the representative dataset of proteins and with the energy function taken in pairwise contact(More)
There have been considerable attempts in the past to relate phenotypic trait--habitat temperature of organisms--to their genotypes, most importantly compositions of their genomes and proteomes. However, despite accumulation of anecdotal evidence, an exact and conclusive relationship between the former and the latter has been elusive. We present an(More)
BACKGROUND Many attempts have been made to resolve in time the folding of model proteins in computer simulations. Different computational approaches have emerged. Some of these approaches suffer from insensitivity to the geometrical properties of the proteins (lattice models), whereas others are computationally heavy (traditional molecular dynamics). (More)
Analysis of structures and sequences of several hyperthermostable proteins from various sources reveals two major physical mechanisms of their thermostabilization. The first mechanism is "structure-based," whereby some hyperthermostable proteins are significantly more compact than their mesophilic homologues, while no particular interaction type appears to(More)
Experimental and simulation studies show that small monomeric proteins fold in one kinetic step, which entails overcoming the free-energy barrier between the unfolded and the native protein through a transition state. Two models of transition state formation have been proposed: a 'nonspecific' one in which it depends on the formation of a sufficient number(More)
We have studied the folding mechanism of lattice model 36-mer proteins. Using a simulated annealing procedure in sequence space, we have designed sequences to have sufficiently low energy in a given target conformation, which plays the role of the native structure in our study. The sequence design algorithm generated sequences for which the native(More)