Learn More
The application of T1 in the rotating frame (T1rho) to functional MRI in humans was studied at 3 T. Increases in neural activity increased parenchymal T1rho. Modeling suggested that cerebral blood volume mediated this increase. A pulse sequence named spin-locked echo planar imaging (SLEPI) that produces both T1rho and T2* contrast was developed and used in(More)
PURPOSE To develop a novel pulse sequence called spin-locked echo planar imaging (EPI), or (SLEPI), to perform rapid T1rho-weighted MRI. MATERIALS AND METHODS SLEPI images were used to calculate T1rho maps in two healthy volunteers imaged on a 1.5-T Sonata Siemens MRI scanner. The head and extremity coils were used for imaging the brain and blood in the(More)
Recent theoretical and experimental work has suggested that spin echo (SE) functional MRI (fMRI) has improved localization of neural activity compared to gradient echo (GE) fMRI at high field strengths, albeit with a decrease in blood oxygenation level-dependent (BOLD) contrast. The present study investigated spatial and temporal variations in GE and SE(More)
The temporal resolving power of blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) at 3T was investigated in the visual and auditory cortices of the human brain. By using controlled temporal delays and selective visual hemifield stimulation, regions with similar (left vs. right occipital cortex) and different (occipital(More)
RATIONALE AND OBJECTIVES Physiological noise in blood oxygen level-dependent functional magnetic resonance imaging (BOLD fMRI) has been shown to have characteristics similar to the BOLD signal itself, suggesting that it may have a vascular dependence. In this study, we evaluated the influence of physiological noise in fMRI as revealed by the differences in(More)
Since introducing Internet-based distance education programs in 1996, Drexel University has gained recognition as an online education leader. Remaining at the vanguard means finding innovative, automated solutions to determine which students are contributing to thoughtful discussion, helping faculty engage with online students more efficiently, and spending(More)
RATIONALE AND OBJECTIVES Subject motion is well recognized as a significant impediment to resolution and sensitivity in functional magnetic resonance imaging (fMRI). A parallel confounder to fMRI data quality is geometric image distortion, particularly at high field strengths, due to susceptibility-induced magnetic field inhomogeneity. Consequently, many(More)
  • 1