Eugene Gregoryanz

Learn More
The reactivity of xenon with terrestrial oxides was investigated by in situ synchrotron x-ray diffraction. At high temperature (T > 500 kelvin), some silicon was reduced, and the pressure stability of quartz was expanded, attesting to the substitution of some xenon for silicon. When the quartz was quenched, xenon diffused out and only a few weight percent(More)
It has been theorized that at high pressure the increased energy of the zero-point oscillations in hydrogen would destabilize the lattice and form a ground fluid state at 0 K (ref. 1). Theory has also suggested that this fluid state, representing a new state of matter, might have unusual properties governed by quantum effects, such as superfluidity or(More)
Two new transition metal nitrides, IrN2 and OsN2, were synthesized at high pressures and temperatures using laser-heated diamond-anvil cell techniques. Synchrotron x-ray diffraction was used to determine the structures of novel nitrides and the equations of states of both the parent metals as well as the newly synthesized materials. The compounds have bulk(More)
High P-T Raman measurements of solid and fluid hydrogen to above 1100 K at 70 GPa and to above 650 K in 150 GPa range, conditions previously inaccessible by static compression experiments, provide new insight into the behavior of the material under extreme conditions. The data give a direct measure of the melting curve that extends previous optical(More)
We used Raman and visible transmission spectroscopy to investigate dense hydrogen (deuterium) up to 315 (275) GPa at 300 K. At around 200 GPa, we observe the phase transformation, which we attribute to phase III, previously observed only at low temperatures. This is succeeded at 220 GPa by a reversible transformation to a new phase, IV, characterized by the(More)
We report Raman scattering and visible to near-infrared absorption spectra of solid hydrogen under static pressure up to 285 GPa between 20 and 140 K. We obtain pressure dependences of vibron and phonon modes consistent with results previously determined to lower pressures. The results indicate the stability of the ordered molecular phase III to the highest(More)
Sodium exhibits a pronounced minimum of the melting temperature at approximately 118 gigapascals and 300 kelvin. Using single-crystal high-pressure diffraction techniques, we found that the minimum of the sodium melting curve is associated with a concentration of seven different crystalline phases. Slight changes in pressure and/or temperature induce(More)
High-pressure high-temperature synchrotron diffraction measurements reveal a maximum on the melting curve of Na in the bcc phase at approximately 31 GPa and 1000 K and a steep decrease in melting temperature in its fcc phase. The results extend the melting curve by an order of magnitude up to 130 GPa. Above 103 GPa, Na crystallizes in a sequence of phases(More)
Highly sensitive magnetic susceptibility techniques were used to measure the superconducting transition temperatures in S up to 231(±5) GPa. S transforms to a superconductor with Tc of 10 K and has a discontinuity in Tc dependence at 160 GPa corresponding to bco to β-Po phase transition. Above this pressure Tc in S has a maximum reaching about 17.3(±0.5) K(More)
At pressures above a megabar (100 GPa), sodium crystallizes in a number of complex crystal structures with unusually low melting temperatures, reaching as low as 300 K at 118 GPa. We have utilized this unique behavior at extreme pressures to grow a single crystal of sodium at 108 GPa, and have investigated the complex crystal structure at this pressure(More)