Eugene G. Kholmovski

Learn More
BACKGROUND Atrial fibrillation (AF) is associated with diffuse left atrial fibrosis and a reduction in endocardial voltage. These changes are indicators of AF severity and appear to be predictors of treatment outcome. In this study, we report the utility of delayed-enhancement magnetic resonance imaging (DE-MRI) in detecting abnormal atrial tissue before(More)
UNLABELLED MRI for AF Patient Selection and Ablation Approach. INTRODUCTION Left atrial (LA) fibrosis and ablation related scarring are major predictors of success in rhythm control of atrial fibrillation (AF). We used delayed enhancement MRI (DE-MRI) to stratify AF patients based on pre-ablation fibrosis and also to evaluate ablation-induced scarring in(More)
OBJECTIVES We describe a noninvasive method of detecting and quantifying left atrial (LA) wall injury after pulmonary vein antrum isolation (PVAI) in patients with atrial fibrillation (AF). Using a 3-dimensional (3D) delayed-enhancement magnetic resonance imaging (MRI) sequence and novel processing methods, LA wall scarring is visualized at high resolution(More)
BACKGROUND Atrial fibrillation (AF) is a progressive condition that begins with hemodynamic and/or structural changes in the left atrium (LA) and evolves through paroxysmal and persistent stages. Because of limitations with current noninvasive imaging techniques, the relationship between LA structure and function is not well understood. METHODS AND(More)
Diffusion tensor MRI (DTI), using single-shot 2D diffusion weighted-EPI (2D ss-DWEPI), is limited to intracranial (i.c.) applications far from the sinuses and bony structures, due to the severe geometric distortions caused by significant magnetic field inhomogeneities at or near the tissue-air or tissue-bone interfaces. Reducing these distortions in(More)
BACKGROUND Atrial fibrillation (AF) ablation uses radiofrequency (RF) energy to induce thermal damage to the left atrium (LA) in an attempt to isolate AF circuits. This injury can be seen using delayed enhancement magnetic resonance imaging (DE-MRI). OBJECTIVE The purpose of this study was to describe DE-MRI findings of the LA in the acute and chronic(More)
PURPOSE To improve myocardial perfusion magnetic resonance imaging (MRI) by reconstructing undersampled radial data with a spatiotemporal constrained reconstruction method (STCR). MATERIALS AND METHODS The STCR method jointly reconstructs all of the time-frames for each slice. In 7 subjects at rest, on a 3-T scanner, the method was compared with a(More)
BACKGROUND Although catheter ablation therapy for atrial fibrillation (AF) is becoming more common, results vary widely, and patient selection criteria remain poorly defined. We hypothesized that late gadolinium enhancement MRI (LGE-MRI) can identify left atrial (LA) wall structural remodeling (SRM) and stratify patients who are likely or not to benefit(More)
IMPORTANCE Left atrial fibrosis is prominent in patients with atrial fibrillation (AF). Extensive atrial tissue fibrosis identified by delayed enhancement magnetic resonance imaging (MRI) has been associated with poor outcomes of AF catheter ablation. OBJECTIVE To characterize the feasibility of atrial tissue fibrosis estimation by delayed enhancement MRI(More)
OBJECTIVES This study tried to determine the association between left atrial (LA) fibrosis, detected using delayed-enhanced magnetic resonance imaging (DE-MRI), and the CHADS(2) score (point system based on individual clinical risk factors including congestive heart failure, hypertension, age, diabetes, and prior stroke) variables, specifically stroke. (More)