Eugene B. Hanlon

Learn More
We have developed a novel optical method for observing submicrometer intracellular structures in living cells, which is called confocal light absorption and scattering spectroscopic (CLASS) microscopy. It combines confocal microscopy, a well-established high-resolution microscopic technique, with light-scattering spectroscopy. CLASS microscopy requires no(More)
This article reports the development of an optical imaging technique, confocal light absorption and scattering spectroscopic (CLASS) microscopy, capable of noninvasively determining the dimensions and other physical properties of single subcellular organelles. CLASS microscopy combines the principles of light-scattering spectroscopy (LSS) with confocal(More)
Exploration of nanoscale tissue structures is crucial in understanding biological processes. Although novel optical microscopy methods have been developed to probe cellular features beyond the diffraction limit, nanometer-scale quantification remains still inaccessible for in situ tissue. Here we demonstrate that, without actually resolving specific(More)
We describe a new scanning microscopy technique, phase-dispersion microscopy (PDM). The technique is based on measuring the phase difference between the fundamental and the second-harmonic light in a novel interferometer. PDM is highly sensitive to subtle refractive-index differences that are due to dispersion (differential optical path sensitivity, 5 nm).(More)
The testing of candidate drugs to slow progression of Alzheimer's disease (AD) requires clinical trials that are lengthy and expensive. Efforts to model the biochemical milieu of the AD brain may be greatly facilitated by combining two cutting edge technologies to generate three-dimensional (3D) human neuro-spheroid from induced pluripotent stem cells(More)
Coherent light scattering presents complex spatial patterns that depend on morphological and molecular features of biological cells. We present a numerical approach to establish realistic optical cell models for generating virtual cells and accurate simulation of diffraction images that are comparable to measured data of prostate cells. With a contourlet(More)
Gold nanorods can be used as extremely bright labels for differential light scattering measurements using two closely spaced wavelengths, thereby detecting human disease through several centimeters of tissue in vivo. They have excellent biocompatibility, are non-toxic, and are not susceptible to photobleaching. They have narrow, easily tunable plasmon(More)
We demonstrate an optical Fourier filtering method which can be used to characterize subcellular morphology during dynamic cellular function. In this paper, our Fourier filters were based on two-dimensional Gabor elementary functions, which can be tuned to sense directly object size and orientation. We utilize this method to quantify changes in(More)
There is an increasing need for quantitative and computationally affordable models for analyzing tissue metabolism and hemodynamics in microvascular networks. In this work, we develop a hybrid model to solve for the time-varying oxygen advection-diffusion equation in the vessels and tissue. To obtain a three-dimensional temporal evolution of tissue oxygen(More)
  • 1