Eugénie Hébrard

Learn More
We report here evidence of the role that the isoform of the eukaryotic translation initiation factor 4G (eIF(iso)4G) plays in naturally occurring resistance in plant/virus interactions. A genetic and physical mapping approach was developed to isolate the Rymv1 locus controlling the high recessive resistance to Rice yellow mottle virus (RYMV) in the rice(More)
The mechanisms of evolution of plant viruses are being unraveled, yet the timescale of their evolution remains an enigma. To address this critical issue, the divergence time of plant viruses at the intra- and inter-specific levels was assessed. The time of the most recent common ancestor (TMRCA) of Rice yellow mottle virus (RYMV; genus Sobemovirus) was(More)
The rate of evolution of an RNA plant virus has never been estimated using temporally spaced sequence data, by contrast to the information available on an increasing range of animal viruses. Accordingly, the evolution rate of Rice yellow mottle virus (RYMV) was calculated from sequences of the coat protein gene of isolates collected from rice over a 40-year(More)
The helper component of Cauliflower mosaic virus is encoded by viral gene II. This protein (P2) is dispensable for virus replication but required for aphid transmission. The purification of P2 has never been reported, and hence its biochemical properties are largely unknown. We produced the P2 protein via a recombinant baculovirus with a His tag fused at(More)
Several ethylene-response factor (ERF) transcription factors are believed to play a crucial role in the activation of plant defence responses, but little is known about the relationships between the diversity of this family and the functions of groups or individual ERFs in this process. In this study, 200 ERF genes from the unigene cotton database were(More)
Fourteen isolates of Rice yellow mottle virus (RYMV) were selected as representative of the genetic variability of the virus in Africa from a total set of 320 isolates serologically typed or partially sequenced. The 14 isolates were fully sequenced and analyzed together with two previously reported sequences. RYMV had a genomic organization similar to that(More)
The recessive gene rymv-1, responsible for the high resistance of Oryza sativa 'Gigante' to Rice yellow mottle virus (genus Sobemovirus), was overcome by the variant CI4*, which emerged after serial inoculations of the non-resistance-breaking (nRB) isolate CI4. By comparison of the full-length sequences of CI4 and CI4*, a non-synonymous mutation was(More)
Phylogeography of Rice yellow mottle virus (RYMV) was reconstructed from the coat protein gene sequences of a selection of 173 isolates from the 14 countries of mainland Africa where the disease occurred and from the full sequences of 16 representative isolates. Genetic variation was linked to geographical distribution and not to host species as isolates(More)
A monogenic recessive resistance to Rice yellow mottle virus (RYMV) found in the Oryza sativa indica cultivar Gigante and in a few Oryza glaberrima cultivars provided a higher level of resistance than either a polygenic partial resistance found in some japonica cultivars which delayed symptom expression or transgenic resistances which were partial and(More)
Virulent variants of Rice yellow mottle virus (genus Sobemovirus) can emerge on the highly resistant rice cultivars Gigante and Bekarosaka. Non-synonymous mutations responsible for the breakdown of the recessive resistance gene rymv1–2 were located in the VPg after determination of its termini in the polyprotein P2a. The secondary structure of this protein(More)