Learn More
We investigated the effects of aging on the regulation of hypothalamic-pituitary-adrenal function and hippocampal steroid receptors in a series of in vivo and in vitro studies conducted in healthy intact 2-, 8-, 18-, and 24-month-old male Fischer 344/N rats. Basal plasma ACTH levels were similar among age groups, and basal plasma corticosterone levels(More)
8-hydroxy-deoxyguanosine adducts (8-OHdG), indices of oxidative DNA damage, were measured by immunohystochemistry with diaminobenzidine detection in the brain, skeletal muscle, heart, liver, tenuum mucosa and lymphocytes from young (4 months) and aged (24 months) Sprague-Dawley rats fed ad libitum or held on two different caloric restriction diets(More)
Autophagy is a process that sequesters and degrades altered organelles and macromolecular cytoplasmic constituents for cellular restructuring and repair, and as a source of nutrients for metabolic use in early starvation it may be involved in anti-aging mechanisms of caloric restriction. The effects of 40% daily dietary restriction (DR) and intermittent(More)
As the main risk factor for cardiovascular disease, hypercholesterolemia is one of the most studied age-related metabolic alterations. In the liver, cholesterol homeostasis is strictly regulated through the modulation of the 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase), the key enzyme of cholesterol biosynthesis. With ageing, hepatic(More)
Accumulation of oxidatively altered cell components may play a role in the age-related cell deterioration and associated diseases. Caloric restriction is the most robust anti-aging intervention that extends lifespan and retards the appearance of age-associated diseases. Autophagy is a highly conserved cell-repair process in which the cytoplasm, including(More)
The microsomal enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCoAR) is the rate-limiting enzyme in cholesterol synthesis and is highly regulated by a variety of factors. We have recently reported increased reductase activity during ageing, attributed to a higher activation state and impaired degradation of the hepatic enzyme. One of the widely(More)
Genetic disruption of insulin and insulin-like signaling pathways may extend lifespan. Hyperinsulinemia and insulin resistance may accelerate aging. The hypothesis was tested that a once-a-week life-long inhibition of insulin secretion by the administration of anti-lipolytic drugs might have anti-aging effects. Groups of 3-month-old male Sprague-Dawley rats(More)
BACKGROUND It seems to be clear that hepatic age-related HMG-CoA reductase total activation is connected to a rise of reactive oxygen species (ROS). However, the mechanism by which ROS achieve this effect is unknown. Thus, in this work, we have performed a study of HMG-CoAR by analyzing the enzymes involved in its short-term regulation, namely,(More)
We investigated the effects of stress on central and peripheral sympatho-adrenal and sympatho-neural functions in healthy, intact young (3-4 mo) and aged (24 mo) male Fischer 344/N rats. Extracellular fluid (ECF) levels of the catecholamines norepinephrine (NE), dihydroxyphenylglycol (DHPG), methoxyhydroxyphenylglycol (MHPG), and dihydroxyphenylacetic acid(More)
Ageing is accompanied by impaired angiogenesis, as well as by a deficient expression of several angiogenic growth factors and the alteration of endothelial functions. Caloric restriction (CR) is the only intervention that can extend lifespan and retard age-related-decline functions in mammals by reducing the rate of ageing and the progression of the(More)