Learn More
BACKGROUND Obesity in youth remains a major public health issue. Yet no effective long-term preventive strategy exists. We previously showed that a school-based socio-ecological approach targeting behavior and social/environmental influences on physical activity (PA) prevented 4-year excessive weight gain in 12-year olds. In this study, we investigated if(More)
OBJECTIVE Factors governing microRNA expressions in response to changes of cellular environment are still largely unknown. Our aim was to determine whether insulin, the major hormone controlling whole-body energy homeostasis, is involved in the regulation of microRNA expressions in human skeletal muscle. RESEARCH DESIGN AND METHODS We carried out(More)
Insulin initiates diverse hepatic metabolic responses, including gluconeogenic suppression and induction of glycogen synthesis and lipogenesis. The liver possesses a rich sinusoidal capillary network with a higher degree of hypoxia and lower gluconeogenesis in the perivenous zone as compared to the rest of the organ. Here, we show that diverse vascular(More)
OBJECTIVE A strong association between genetic variants and obesity was found for the fat mass and obesity-associated gene (FTO). However, few details are known concerning the expression and function of FTO in skeletal muscle of patients with metabolic diseases. RESEARCH DESIGN AND METHODS We investigated basal FTO expression in skeletal muscle from obese(More)
The sterol regulatory element binding protein 1 (SREBP-1) is regarded as a major factor involved in the nutritional regulation of lipogenesis. The aim of the present work was to demonstrate its involvement in the response of key genes of glucose and lipid metabolism in liver, adipose tissue, and skeletal muscle during fasting and refeeding. The regulation(More)
Combining accelerometry (ACC) with heart rate (HR) monitoring is thought to improve activity energy expenditure (AEE) estimations compared with ACC alone to evaluate the validity of ACC and HR used alone or combined. The purpose of this study was to estimate AEE in free-living conditions compared with doubly labeled water (DLW). Ten-day free-living AEE was(More)
SREBP-1 are ubiquitously expressed transcription factors, strongly expressed in lipogenic tissues where they regulate several metabolic processes like fatty acid synthesis. In skeletal muscle, SREBP-1 proteins regulate the expression of hundreds of genes, and we previously showed that their overexpression induced muscle atrophy together with a combined lack(More)
In this study we have identified the target genes of sterol regulatory element binding protein (SREBP)-1a and SREBP-1c in primary cultures of human skeletal muscle cells, using adenoviral vectors expressing the mature nuclear form of human SREBP-1a or SREBP-1c combined with oligonucleotide microarrays. Overexpression of SREBP-1a led to significant changes(More)
BACKGROUND Mitochondria can sense signals linked to variations in energy demand to regulate nuclear gene expression. This retrograde signaling pathway is presumed to be involved in the regulation of myoblast proliferation and differentiation. Rhabdomyosarcoma cells are characterized by their failure to both irreversibly exit the cell cycle and complete(More)
Muscle atrophy associated with various pathophysiological conditions represents a major health problem, because of its contribution to the deterioration of patient status and its effect on mortality. Although the involvement of pro-inflammatory cytokines in this process is well recognized, the role of sphingolipid metabolism alterations induced by the(More)