Learn More
OBJECTIVE Factors governing microRNA expressions in response to changes of cellular environment are still largely unknown. Our aim was to determine whether insulin, the major hormone controlling whole-body energy homeostasis, is involved in the regulation of microRNA expressions in human skeletal muscle. RESEARCH DESIGN AND METHODS We carried out(More)
BACKGROUND Obesity in youth remains a major public health issue. Yet no effective long-term preventive strategy exists. We previously showed that a school-based socio-ecological approach targeting behavior and social/environmental influences on physical activity (PA) prevented 4-year excessive weight gain in 12-year olds. In this study, we investigated if(More)
Insulin initiates diverse hepatic metabolic responses, including gluconeogenic suppression and induction of glycogen synthesis and lipogenesis. The liver possesses a rich sinusoidal capillary network with a higher degree of hypoxia and lower gluconeogenesis in the perivenous zone as compared to the rest of the organ. Here, we show that diverse vascular(More)
Although it is well established that chronic hypoxia leads to an inexorable loss of skeletal muscle mass in healthy subjects, the underlying molecular mechanisms involved in this process are currently unknown. Skeletal muscle atrophy is also an important systemic consequence of chronic obstructive pulmonary disease (COPD), but the role of hypoxemia in this(More)
The sterol regulatory element binding protein 1 (SREBP-1) is regarded as a major factor involved in the nutritional regulation of lipogenesis. The aim of the present work was to demonstrate its involvement in the response of key genes of glucose and lipid metabolism in liver, adipose tissue, and skeletal muscle during fasting and refeeding. The regulation(More)
OBJECTIVE A strong association between genetic variants and obesity was found for the fat mass and obesity-associated gene (FTO). However, few details are known concerning the expression and function of FTO in skeletal muscle of patients with metabolic diseases. RESEARCH DESIGN AND METHODS We investigated basal FTO expression in skeletal muscle from obese(More)
The epidemic of obesity imposes unprecedented challenges on human adipose tissue (WAT) storage capacity that may benefit from adaptive mechanisms to maintain adipocyte functionality. Here, we demonstrate that changes in the regulatory feedback set point control of Insig1/SREBP1 represent an adaptive response that preserves WAT lipid homeostasis in obese and(More)
Combining accelerometry (ACC) with heart rate (HR) monitoring is thought to improve activity energy expenditure (AEE) estimations compared with ACC alone to evaluate the validity of ACC and HR used alone or combined. The purpose of this study was to estimate AEE in free-living conditions compared with doubly labeled water (DLW). Ten-day free-living AEE was(More)
In this study we have identified the target genes of sterol regulatory element binding protein (SREBP)-1a and SREBP-1c in primary cultures of human skeletal muscle cells, using adenoviral vectors expressing the mature nuclear form of human SREBP-1a or SREBP-1c combined with oligonucleotide microarrays. Overexpression of SREBP-1a led to significant changes(More)
SREBP-1 are ubiquitously expressed transcription factors, strongly expressed in lipogenic tissues where they regulate several metabolic processes like fatty acid synthesis. In skeletal muscle, SREBP-1 proteins regulate the expression of hundreds of genes, and we previously showed that their overexpression induced muscle atrophy together with a combined lack(More)