Etienne H Schacht

Learn More
Dynamic shear oscillation measurements at small strain were used to characterize the viscoelastic properties and related differences in the molecular structure of hydrogels based on gelatin methacrylamide. Gelatin was derivatized with methacrylamide side groups and was subsequently cross-linked by radical polymerization via photoinitiation. The light(More)
Label-free biosensors attempt to overcome the stability and reliability problems of biosensors relying on the detection of labeled molecules. We propose a label-free biosensor based on microring cavities in Silicon-on-Insulator (SOI) that fits in an area below 10x10mum(2). The resonance wavelength shift that occurs when the surroundings of a cavity is(More)
Mineralized extracellular matrix formation is representative for the osteoinductive capacity of biomaterials and is often tested in vitro. Characteristics of in vitro mineralization of primary rat osteoblastic cells (bone marrow, calvaria, periosteum, fetal and adult long bone) and UMR-106 cells were compared by von Kossa staining, FTIR, X-ray(More)
A sufficient amount of easily obtained and well-characterized osteoblastic cells is a useful tool to study biomaterial/cell interactions essential for bone tissue engineering. Osteoblastic cells were derived from adult and fetal rat via different isolation techniques. The isolation and in vitro proliferation of primary cultures were compared. The osteogenic(More)
Hydrogels are physically or chemically cross-linked polymer networks that are able to absorb large amounts of water. They can be classified into different categories depending on various parameters including the preparation method, the charge, and the mechanical and structural characteristics. The present review aims to give an overview of hydrogels based(More)
The influence of shape, molecular weight and pegylation of linear, grafted, dendritic and branched poly-L-lysines on their DNA delivery properties were investigated. DNA binding, condensation, complex size and morphology, cell uptake and transfection efficiency were determined. Most polylysines condense DNA, linear polymers being more efficient than most(More)
Complexes formed between DNA and cationic polymers are attracting increasing attention as novel synthetic vectors for delivery of genes. We are trying to improve biological properties of such complexes by oriented self-assembly of DNA with cationic-hydrophilic block copolymers, designed to enshroud the complex within a protective hydrophilic polymer corona.(More)
In the present work, two strategies were elaborated to surface-functionalize implantable polyimide sheets. In the first methodology, cross-linkable vinyl groups were introduced on the polyimide surface using aminopropylmethacrylamide. In the second approach, a reactive succinimidyl ester was introduced on the surface of PI. Using the former approach, the(More)
Polymer coatings have been suggested to decrease the thrombogenicity of metallic intravascular stents. The purpose of the present study was to investigate the intimal response to two different polymers when used as coatings for stents implanted in normal porcine coronary arteries. Non-articulated stainless steel-slotted tube stents were coated with either a(More)
Candida albicans biofilms are a major cause of voice prosthesis deterioration in laryngectomized patients. The aim of this study was to produce a surface capable of inhibiting C. albicans biofilm formation. Dimethylaminoethylmethacrylate (DMAEMA) and polyethylenimine (PEI) moieties were covalently bound to the surface of polydimethylsiloxane (PDMS) or(More)