Learn More
Flaviviridae are small enveloped viruses hosting a positive-sense single-stranded RNA genome. Besides yellow fever virus, a landmark case in the history of virology, members of the Flavivirus genus, such as West Nile virus and dengue virus, are increasingly gaining attention due to their re-emergence and incidence in different areas of the world. Additional(More)
Aerolysin is secreted as an inactive dimeric precursor by the bacterium Aeromonas hydrophila. Proteolytic cleavage within a mobile loop near the C terminus of the protoxin is required for oligomerization and channel formation. This loop contains the sequence KVRRAR432, which should be recognized by mammalian proprotein convertases such as furin, PACE4, and(More)
In the eukaryotic cell, capping of mRNA 5' ends is an essential structural modification that allows efficient mRNA translation, directs pre-mRNA splicing and mRNA export from the nucleus, limits mRNA degradation by cellular 5'-3' exonucleases and allows recognition of foreign RNAs (including viral transcripts) as 'non-self'. However, viruses have evolved(More)
SARS-coronavirus (SARS-CoV) genome expression depends on the synthesis of a set of mRNAs, which presumably are capped at their 5' end and direct the synthesis of all viral proteins in the infected cell. Sixteen viral non-structural proteins (nsp1 to nsp16) constitute an unusually large replicase complex, which includes two methyltransferases putatively(More)
The flavivirus RNA genome contains a conserved cap-1 structure, (7Me)GpppA(2'OMe)G, at the 5' end. Two mRNA cap methyltransferase (MTase) activities involved in the formation of the cap, the (guanine-N7)- and the (nucleoside-2'O)-MTases (2'O-MTase), reside in a single domain of non-structural protein NS5 (NS5MTase). This study reports on the biochemical(More)
We report high-throughput structure-based virtual screening of putative Flavivirus 2'-O-methyltransferase inhibitors together with results from subsequent bioassay tests of selected compounds. Potential inhibitors for the S-adenosylmethionine binding site were explored using 2D similarity searching, pharmacophore filtering and docking. The inhibitory(More)
Flaviviruses are the causative agents of severe diseases such as Dengue or Yellow fever. The replicative machinery used by the virus is based on few enzymes including a methyltransferase, located in the N-terminal domain of the NS5 protein. Flaviviral methyltransferases are involved in the last two steps of the mRNA capping process, transferring a methyl(More)
Many eukaryotic and viral mRNAs, in which the first transcribed nucleotide is an adenosine, are decorated with a cap-1 structure, (7Me)G5'-ppp5'-A(2'OMe). The positive-sense RNA genomes of flaviviruses (Dengue, West Nile virus) for example show strict conservation of the adenosine. We set out to produce GpppA- and (7Me)GpppA-capped RNA oligonucleotides for(More)
The entry of enveloped viruses into its host cells is a crucial step for the propagation of viral infection. The envelope glycoprotein complex controls viral tropism and promotes the membrane fusion process. The surface glycoproteins of enveloped viruses are synthesized as inactive precursors and sorted through the constitutive secretory pathway of the(More)
The N-terminal 33 kDa domain of non-structural protein 5 (NS5) of dengue virus (DV), named NS5MTase(DV), is involved in two of four steps required for the formation of the viral mRNA cap (7Me)GpppA(2'OMe), the guanine-N7 and the adenosine-2'O methylation. Its S-adenosyl-l-methionine (AdoMet) dependent 2'O-methyltransferase (MTase) activity has been shown on(More)