Etienne Combrisson

Learn More
Machine learning techniques are increasingly used in neuroscience to classify brain signals. Decoding performance is reflected by how much the classification results depart from the rate achieved by purely random classification. In a 2-class or 4-class classification problem, the chance levels are thus 50% or 25% respectively. However, such thresholds hold(More)
cognitive states and motor intentions from intracranial EEG: How promising is high-frequency brain activity for brain-machine interfaces?. HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in(More)
Goal-directed motor behavior is associated with changes in patterns of rhythmic neuronal activity across widely distributed brain areas. In particular, movement initiation and execution are mediated by patterns of synchronization and desynchronization that occur concurrently across distinct frequency bands and across multiple motor cortical areas. To date,(More)
The ability to monitor our own errors is mediated by a network that includes dorsomedial prefrontal cortex (dmPFC) and anterior insula (AI). However, the dynamics of the underlying neurophysiological processes remain unclear. In particular, whether AI is on the receiving or driving end of the error-monitoring network is unresolved. Here, we recorded(More)
Sleep spindles and K-complexes are among the most prominent micro-events observed in electroencephalographic (EEG) recordings during sleep. These EEG microstructures are thought to be hallmarks of sleep-related cognitive processes. Although tedious and time-consuming, their identification and quantification is important for sleep studies in both healthy(More)
OBJECTIVE Neuroimaging studies provide evidence of disturbed resting-state brain networks in Schizophrenia (SZ). However, untangling the neuronal mechanisms that subserve these baseline alterations requires measurement of their electrophysiological underpinnings. This systematic review specifically investigates the contributions of resting-state(More)
Despite being the object of a thriving field of clinical research, the investigation of intrinsic brain network alterations in psychiatric illnesses is still in its early days. Because the pathological alterations are predominantly probed using functional magnetic resonance imaging (fMRI), many questions about the electrophysiological bases of resting-state(More)
We introduce Sleep, a new Python open-source graphical user interface (GUI) dedicated to visualization, scoring and analyses of sleep data. Among its most prominent features are: (1) Dynamic display of polysomnographic data, spectrogram, hypnogram and topographic maps with several customizable parameters, (2) Implementation of several automatic detection of(More)
  • 1