Learn More
The suprachiasmatic nuclei (SCN) of the hypothalamus contain the master mammalian circadian clock, which is mainly reset by light. Temporal restricted feeding, a potent synchronizer of peripheral oscillators, has only weak influence on light-entrained rhythms via the SCN, unless restricted feeding is coupled with calorie restriction, thereby altering phase(More)
The suprachiasmatic nuclei (SCN) of the hypothalamus are necessary for coordination of major aspects of circadian rhythmicity in mammals. Although the molecular clock mechanism of the SCN has been a field of intense research during the last decade, the role of the neuropeptides in the SCN, including arginine-vasopressin (AVP), vasoactive intestinal(More)
In mammals, the circadian clock relies on interlocked feedback loops involving clock genes and their protein products. Post-translational modifications control intracellular trafficking, functionality and degradation of clock proteins and are keys to the functioning of the clock as recently exemplified for the F-Box protein Fbxl3. The SCF(Fbxl3) complex(More)
Circadian timing affects almost all life's processes. It not only dictates when we sleep, but also keeps every cell and tissue working under a tight temporal regimen. The daily variations of physiology and behavior are controlled by a highly complex system comprising of a master circadian clock in the suprachiasmatic nuclei (SCN) of the hypothalamus,(More)
Predicting time of food availability is key for survival in most animals. Under restricted feeding conditions, this prediction is manifested in anticipatory bouts of locomotor activity and body temperature. This process seems to be driven by a food-entrainable oscillator independent of the main, light-entrainable clock located in the suprachiasmatic nucleus(More)
Daily rhythmicity, including timing of wakefulness and hormone secretion, is mainly controlled by a master clock located in the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN clockwork involves various clock genes, with specific temporal patterns of expression that are similar in nocturnal and diurnal species (e.g. the clock gene Per1 in the SCN(More)
Daily brain rhythmicity, which controls the sleep-wake cycle and neuroendocrine functions, is generated by an endogenous circadian timing system. Within the multi-oscillatory circadian network, a master clock is located in the suprachiasmatic nuclei of the hypothalamus, whose main synchroniser (Zeitgeber) is light. In contrast, imposed meal times and(More)
The molecular mechanisms of the mammalian circadian clock located in the suprachiasmatic nucleus have been essentially studied in nocturnal species. Currently, it is not clear if the clockwork and the synchronizing mechanisms are similar between diurnal and nocturnal species. Here we investigated in a day-active rodent Arvicanthis ansorgei, some of the(More)
Circadian clocks enable the organisms to anticipate predictable cycling events in the environment. The mechanisms of the main circadian clock, localized in the suprachiasmatic nuclei of the hypothalamus, involve intracellular autoregulatory transcriptional loops of specific genes, called clock genes. In the suprachiasmatic clock, circadian oscillations of(More)
The distribution of serotonin (5-HT)-containing perikarya, fibers and terminals in the brain of the pigeon (Columba livia) was investigated, using immunohistochemical and immunofluorescence methods combined with retrograde axonal transport. Twenty-one different groups of 5-HT immunoreactive (IR) cells were identified, 2 of which were localized at the(More)