Esther L. Sabban

Lidia I Serova15
Lishay G Alaluf7
Lidia Serova7
Richard Kvetnansky6
Marcela Laukova6
15Lidia I Serova
7Lishay G Alaluf
7Lidia Serova
6Richard Kvetnansky
6Marcela Laukova
Learn More
Brain melanocortinergic systems and specifically melanocortin receptor four (MC4R) are implicated in modulation of anxiety- and depressive-like behavior induced by mild or moderate stress. Here we examine whether blockage of central MC4Rs with HS014 before severe traumatic stress may protect against development of anxiety and depression co-morbid with(More)
1. Stress elicits activation of several transcription factors involved in the regulation of catecholamine biosynthetic enzyme gene expression depending on its duration or repetition. However, the dynamic of the conversion of transient transcriptional activation with acute stress to sustained changes in transcription in response to repeated exposure to(More)
BACKGROUND Stress triggers adaptive and maladaptive changes in the central nervous system, including activation of the hypothalamic-pituitary-adrenal axis, and can trigger mood disorders and posttraumatic stress disorder. We examined the effect of immobilization stress (IMO) on gene expression of tryptophan hydroxylase (TPH), the rate-limiting enzyme in(More)
Commercially available angiotensin II At₂ receptor antibodies are widely employed for receptor localization and quantification, but they have not been adequately validated. In this study, we characterized three commercially available At₂ receptor antibodies: 2818-1 from Epitomics, sc-9040 from Santa Cruz Biotechnology, Inc., and AAR-012 from Alomone Labs.(More)
The corticotropin-releasing hormone (CRH) family regulates the endocrine stress response. Here, we examined the effect of immobilization stress (IMO) on gene expression of adrenomedullary CRH family members. Urocortin 2 (Ucn2) has the highest basal gene expression and is increased by > 30-fold in response to single IMO and about 10-fold after six daily(More)
Here we review how prior experience with stress alters the response to a subsequent homotypic or heterotypic stressor, focusing on the catecholaminergic systems in the adrenal medulla and the locus coeruleus (LC). The changes in response to homotypic stress differ depending on the stressor applied. With immobilization stress (IMO), transcriptional responses(More)
The effect of different dose, mode and duration of estradiol administration was examined in the different brain catecholaminergic areas in ovariectomized (OVX) female rats. We determined changes in mRNA levels of tyrosine hydroxylase (TH), rate-limiting enzyme in catecholamine (CA) biosynthesis of GTP cyclohydrolase I (GTPCH), rate-limiting enzyme in(More)
Long-term changes in catecholamine levels and expression of their biosynthetic enzymes are associated with several stress-related disorders such as elevated plasma norepinephrine in posttraumatic stress disorder and increased postmortem tyrosine hydroxylase in the locus coeruleus with major depression. Stress elevates tyrosine hydroxylase gene expression in(More)
Stress induces tyrosine hydroxylase (TH) and dopamine beta-hydroxylase (DBH) gene expression in sympathetic ganglia and adrenal medulla (AM). However, distinct molecular mechanisms appear to regulate these genes in these locations. The elevation of TH mRNA in response to single immobilization stress (IMO) in AM is robust, but transient, while the induction(More)