Esther Kellenberger

Learn More
A novel method to measure distances between druggable protein cavities is presented. Starting from user-defined ligand binding sites, eight topological and physicochemical properties are projected from cavity-lining protein residues to an 80 triangle-discretised sphere placed at the centre of the binding site, thus defining a cavity fingerprint.(More)
The sc-PDB is a collection of 6 415 three-dimensional structures of binding sites found in the Protein Data Bank (PDB). Binding sites were extracted from all high-resolution crystal structures in which a complex between a protein cavity and a small-molecular-weight ligand could be identified. Importantly, ligands are considered from a pharmacological and(More)
BACKGROUND The sc-PDB database is an annotated archive of druggable binding sites extracted from the Protein Data Bank. It contains all-atoms coordinates for 8166 protein-ligand complexes, chosen for their geometrical and physico-chemical properties. The sc-PDB provides a functional annotation for proteins, a chemical description for ligands and the(More)
Quantification of local similarity between protein 3D structures is a promising tool in computer-aided drug design and prediction of biological function. Over the last ten years, several computational methods were proposed, mostly based on geometrical comparisons. This review summarizes the recent literature and gives an overview of available programs. A(More)
Estimating the pairwise similarity of protein-ligand binding sites is a fast and efficient way of predicting cross-reactivity and putative side effects of drug candidates. Among the many tools available, three-dimensional (3D) alignment-dependent methods are usually slow and based on simplified representations of binding site atoms or surfaces. On the other(More)
Structure-based virtual screening is a promising tool to identify putative targets for a specific ligand. Instead of docking multiple ligands into a single protein cavity, a single ligand is docked in a collection of binding sites. In inverse screening, hits are in fact targets which have been prioritized within the pool of best ranked proteins. The target(More)
Selectivity is a key factor in drug development. In this paper, we questioned the Protein Data Bank to better understand the reasons for the promiscuity of bioactive compounds. We assembled a data set of >1000 pairs of three-dimensional structures of complexes between a "drug-like" ligand (as its physicochemical properties overlap that of approved drugs)(More)
The sc-PDB database (available at is a comprehensive and up-to-date selection of ligandable binding sites of the Protein Data Bank. Sites are defined from complexes between a protein and a pharmacological ligand. The database provides the all-atom description of the protein, its ligand, their binding site and their(More)
  • Javier Garcia-Perez, Isabelle Staropoli, Stéphane Azoulay, Jean-Thomas Heinrich, Almudena Cascajero, Philippe Colin +5 others
  • 2015
Maraviroc (MVC) is an allosteric CCR5 inhibitor used against HIV-1 infection. While MVC-resistant viruses have been identified in patients, it still remains incompletely known how they adjust their CD4 and CCR5 binding properties to resist MVC inhibition while preserving their replicative capacity. It is thought that they maintain high efficiency of(More)
Bitopic binding properties apply to a variety of muscarinic compounds that span and simultaneously bind to both the orthosteric and allosteric receptor sites. We provide evidence that fluorescent pirenzepine derivatives, with the M1 antagonist fused to the boron-dipyrromethene [Bodipy (558/568)] fluorophore via spacers of varying lengths, exhibit(More)