Learn More
Thyroid hormone-induced metamorphosis seems to represent an ancestral feature of chrordates (urochordates, cephalochordates and vertebrates), but also of nonchordate animals. Although thyroid hormones and thyroid hormone receptor profiles during metamorphosis have been analyzed in different vertebrate taxa, including fish, developmental expression and(More)
Ghrelin is a potent orexigenic signal mainly synthesized in the stomach and foregut of vertebrates. Recent studies in rodents point out that ghrelin could also act as an input for the circadian system and/or as an output of peripheral food-entrainable oscillators, being involved in the food anticipatory activity (FAA). In this study we pursue the possible(More)
The purpose of the present study was to elucidate the possible role of neuropeptide Y (NPY) in the feeding regulation in fish. We examined the effects of intracerebroventricular (i.c.v.) or intraperitoneal (i.p.) neuropeptide Y administration on food intake in satiated goldfish, at different time intervals postinjection (0-2, 2-8 and 0-8 h). Food intake was(More)
Little is known about the feeding time dependence of clock gene expression in fish. The aim of the present study was to investigate whether a scheduled feeding time can entrain the rhythmic expression of several clock genes (period and cryptocrome) in the brain and liver of a teleost, the goldfish. Fish maintained under continuous light (LL) conditions were(More)
Orexins are neuropeptides mainly known for regulating feeding behavior and sleep-wakefulness cycle in vertebrates. Daily variations of orexin-A expression have been reported in fish, with the highest levels preceding feeding time. However, it is unknown if such variations could be related with daily rhythms of clock genes, which form the molecular core of(More)
It has been suggested that melatonin is synthesized in nonphotosensitive organs of vertebrates in addition to the well-known sites of the pineal gland and retina. However, very few studies have demonstrated the gene expression of melatonin-synthesizing enzymes in extrapineal and extraretinal locations. This study focuses on the circadian expression of the(More)
The circadian system drives daily physiological and behavioral rhythms that allow animals to anticipate cyclic environmental changes. The discovery of the known as "clock genes", which are very well conserved through vertebrate phylogeny, highlighted the molecular mechanism of circadian oscillators functioning, based on transcription and translation cycles(More)
The present study investigates the possible direct actions of melatonin (N-acetyl-5-methoxytryptamine) on intestinal motility in goldfish (Carassius auratus) using an in vitro system of isolated intestine in an organ bath engaged to an isometric transducer. The longitudinal strips from goldfish intestine in the organ bath showed a resting spontaneous(More)
The functional organization of the circadian system and the location of the main circadian oscillators vary through phylogeny. Present study investigates by in situ hybridization the anatomical location of the clock gene gPer1b in forebrain and midbrain, pituitary, and in two peripheral locations, the anterior intestine and liver, in a teleost fish, the(More)
The aim of this study was to characterize 2-[125I]iodomelatonin binding sites in the neural retina and central nervous system (telencephalon, diencephalon, and optic tectum) of the anuran amphibian Rana perezi. Saturation and kinetic studies and pharmacological characterization revealed the existence of a unique melatonin-binding site that belongs to the(More)