Esther E Dupont-Versteegden

Learn More
Muscle atrophy is associated with a loss of muscle fiber nuclei, most likely through apoptosis. We investigated age-related differences in the extent of apoptosis in soleus muscle of young (6 mo) and old (32 mo) male Fischer 344 x Brown Norway rats subjected to acute disuse atrophy induced by 14 days of hindlimb suspension (HS). HS-induced atrophy(More)
An important unresolved question in skeletal muscle plasticity is whether satellite cells are necessary for muscle fiber hypertrophy. To address this issue, a novel mouse strain (Pax7-DTA) was created which enabled the conditional ablation of >90% of satellite cells in mature skeletal muscle following tamoxifen administration. To test the hypothesis that(More)
Skeletal muscle atrophy is associated with an increase in apoptosis, and we showed previously that endonuclease G (EndoG) is localized to nuclei following unloading. The goal of this study was to determine whether the onset of apoptosis in response to disuse was consistent with the hypothesis that EndoG is involved in myofiber nuclear loss. Atrophy was(More)
There is a growing recognition that noncoding RNAs (ncRNA) play an important role in the regulation of gene expression. A class of small (19-22 nt) ncRNAs, known as microRNAs (miRs), have received a great deal of attention lately because of their ability to repress gene expression through a unique posttranscriptional 3'-untranslated region (UTR) mechanism.(More)
Muscles of spinal cord-transected rats exhibit severe atrophy and a shift toward a faster phenotype. Exercise can partially prevent these changes. The goal of this study was to investigate early events involved in regulating the muscle response to spinal transection and passive hindlimb exercise. Adult female Sprague-Dawley rats were anesthetized, and a(More)
The effects of exercise and the combination of exercise and clenbuterol on progression of muscular dystrophy were studied in mdx mice. At 3 wk of age, mdx mice were randomly assigned to sedentary (MS), exercise (ME), or combined exercise and clenbuterol (MEC) groups. Clenbuterol was given in the drinking water (1.0-1.5 mg . kg body weight-1 . day-1), and(More)
Our aim in the current study was to determine the necessity of satellite cells for long-term muscle growth and maintenance. We utilized a transgenic Pax7-DTA mouse model, allowing for the conditional depletion of > 90% of satellite cells with tamoxifen treatment. Synergist ablation surgery, where removal of synergist muscles places functional overload on(More)
Effects of voluntary wheel running on contractile properties of diaphragm (DIA) and soleus (SOL) of dystrophic (mdx) and control (C57BL/10SNJ) mice were evaluated. In particular, we tested the hypothesis that daily voluntary running is not deleterious to muscle function in mdx mice. Both groups of mice ran extensively (control mice approximately 7 km/day,(More)
Accelerated apoptosis in skeletal muscle is increasingly recognized as a potential mechanism contributing to the development of sarcopenia of aging and disuse muscle atrophy. Given their central role in the regulation of apoptosis, mitochondria are regarded as key players in the pathogenesis of myocyte loss during aging and other atrophying conditions.(More)
Activation of adult myoblasts called satellite cells during muscle degeneration is an important aspect of muscle regeneration. Satellite cells are believed to be the only myogenic stem cells in adult skeletal muscle and the source of regenerating muscle fibers. Upon activation, satellite cells proliferate, migrate to the site of degeneration, and become(More)