Learn More
Muscles of spinal cord-transected rats exhibit severe atrophy and a shift toward a faster phenotype. Exercise can partially prevent these changes. The goal of this study was to investigate early events involved in regulating the muscle response to spinal transection and passive hindlimb exercise. Adult female Sprague-Dawley rats were anesthetized, and a(More)
There is a growing recognition that noncoding RNAs (ncRNA) play an important role in the regulation of gene expression. A class of small (19-22 nt) ncRNAs, known as microRNAs (miRs), have received a great deal of attention lately because of their ability to repress gene expression through a unique posttranscriptional 3'-untranslated region (UTR) mechanism.(More)
Muscle atrophy is associated with a loss of muscle fiber nuclei, most likely through apoptosis. We investigated age-related differences in the extent of apoptosis in soleus muscle of young (6 mo) and old (32 mo) male Fischer 344 x Brown Norway rats subjected to acute disuse atrophy induced by 14 days of hindlimb suspension (HS). HS-induced atrophy(More)
Skeletal muscle atrophy is associated with an increase in apoptosis, and we showed previously that endonuclease G (EndoG) is localized to nuclei following unloading. The goal of this study was to determine whether the onset of apoptosis in response to disuse was consistent with the hypothesis that EndoG is involved in myofiber nuclear loss. Atrophy was(More)
Our aim in the current study was to determine the necessity of satellite cells for long-term muscle growth and maintenance. We utilized a transgenic Pax7-DTA mouse model, allowing for the conditional depletion of > 90% of satellite cells with tamoxifen treatment. Synergist ablation surgery, where removal of synergist muscles places functional overload on(More)
Activation of adult myoblasts called satellite cells during muscle degeneration is an important aspect of muscle regeneration. Satellite cells are believed to be the only myogenic stem cells in adult skeletal muscle and the source of regenerating muscle fibers. Upon activation, satellite cells proliferate, migrate to the site of degeneration, and become(More)
Accelerated apoptosis in skeletal muscle is increasingly recognized as a potential mechanism contributing to the development of sarcopenia of aging and disuse muscle atrophy. Given their central role in the regulation of apoptosis, mitochondria are regarded as key players in the pathogenesis of myocyte loss during aging and other atrophying conditions.(More)
Muscle atrophy with aging or disuse is associated with deregulated iron homeostasis and increased oxidative stress likely inflicting damage to nucleic acids. Therefore, we investigated RNA and DNA oxidation, and iron homeostasis in gastrocnemius muscles. Disuse atrophy was induced in 6- and 32-month old male Fischer 344/Brown Norway rats by 14 days of hind(More)
A key determinant of geriatric frailty is sarcopenia, the age-associated loss of skeletal muscle mass and strength. Although the etiology of sarcopenia is unknown, the correlation during aging between the loss of activity of satellite cells, which are endogenous muscle stem cells, and impaired muscle regenerative capacity has led to the hypothesis that the(More)
Cycling exercise attenuates atrophy in hindlimb muscles and causes changes in spinal cord properties after spinal cord injury in rats. We hypothesized that exercising soleus muscle expresses genes that are potentially beneficial to the injured spinal cord. Rats underwent spinal cord injury at T10 and were exercised on a motor-driven bicycle. Soleus muscle(More)