Esther Appel

Learn More
In this study, we compared the dorsal and ventral patterns of three vein joint types and three types of resilin patches in the wings of the dragonfly Epiophlebia superstes. The joint types were classified according to their general structure and the resilin patch types according to their arrangement at joints and in the adjacent wing membrane. Resilin(More)
Dragonfly wings are known as biological composites with high morphological complexity. They mainly consist of a network of rigid veins and flexible membranes, and enable insects to perform various flight manoeuvres. Although several studies have been done on the aerodynamic performance of Odonata wings and the mechanisms involved in their deformations,(More)
Insect wing veins are biological composites of chitin and protein arranged in a complex lamellar configuration. Although these hierarchical structures are found in many 'venous wings' of insects, very little is known about their physical and mechanical characteristics. For the first time, we carried out a systematic comparative study to gain a better(More)
The flight performance of insects is strongly affected by the deformation of the wing during a stroke cycle. Many insects therefore use both active and passive mechanisms to control the deformation of their wings in flight. Several studies have focused on the wing kinematics, and plenty is known about the mechanism of their passive deformability. However,(More)
Octopus suckers are able to attach to any smooth surface and many rough surfaces. Here, we have discovered that the sucker surface, which has been hypothesised to be responsible for sealing the orifice during adhesion, is not smooth as previously assumed, but is completely covered by a dense network of hair-like micro-outgrowths. This finding is(More)
Resilin is an elastomeric protein typically occurring in exoskeletons of arthropods. It is composed of randomly orientated coiled polypeptide chains that are covalently cross-linked together at regular intervals by the two unusual amino acids dityrosine and trityrosine forming a stable network with a high degree of flexibility and mobility. As a result of(More)
Wing pigmentation is a trait that predicts the outcome of male contests in some damselflies. Thus, it is reasonable to suppose that males would have the ability to assess wing pigmentation and adjust investment in a fight according to the costs that the rival may potentially impose. Males of the damselfly Mnesarete pudica exhibit red-coloured wings and(More)
  • 1