Ester Casanova

Learn More
Modulation of miR-33 and miR-122 has been proposed to be a promising strategy to treat dyslipidemia and insulin resistance associated with obesity and metabolic syndrome. Interestingly, specific polyphenols reduce the levels of these mi(cro)RNAs. The aim of this study was to elucidate the effect of polyphenols of different chemical structure on miR-33a and(More)
Deregulation of miR-33 and miR-122, as major regulators of lipid metabolism in liver, has been related to obesity and metabolic syndrome. Proanthocyanidins repress these microRNAs in healthy animals. Hence, we hypothesized that long-term consumption of dietary proanthocyanidins can normalize the expression of miR-33a and miR-122. Therefore, the objective of(More)
Skeletal muscle is a key organ of mammalian energy metabolism, and its mitochondria are multifunction organelles that are targets of dietary bioactive compounds. The goal of this work was to examine the regulation of mitochondrial dynamics, functionality and cell energy parameters using docosahexaenoic acid (DHA), epigallocatechin gallate (EGCG) and a(More)
Postprandial lipemia influences the development of atherosclerosis, which itself constitutes a risk factor for the development of cardiovascular diseases. The introduction of bioactive compounds may prevent these deleterious effects. Proanthocyanidins are potent antioxidants that have hypolipidemic properties, while omega-3 polyunsaturated fatty acids (ω3(More)
SCOPE One major health problem in westernized countries is dysregulated fatty acid and cholesterol metabolism that causes pathologies such as metabolic syndrome. Previous studies from our group have shown that proanthocyanidins, which are the most abundant polyphenols in the human diet, regulate lipid metabolism and are potent hypolipidemic agents. The(More)
Elevated postprandial triglycerides are associated with an increased risk of cardiovascular disease. Acute proanthocyanidin supplementation improves postprandial lipemia. Therefore, in this study, we evaluated whether a chronic treatment (3 weeks) of grape seed proanthocyanidins (GSPE) improves tolerance to lipid overload and represses liver microRNA(More)
miR-33 and miR-122 are major regulators of lipid metabolism in the liver, and their deregulation has been linked to the development of metabolic diseases such as obesity and metabolic syndrome. However, the biological importance of these miRNAs has been defined using genetic models. The aim of this study was to evaluate whether the levels of miR-122 and(More)
Obesity has become a worldwide epidemic. The cafeteria diet (CD) induces obesity and oxidative-stress-associated insulin resistance. Polyunsaturated fatty acids and polyphenols are dietary compounds that are intensively studied as products that can reduce the health complications related to obesity. We evaluate the effects of 21 days of supplementation with(More)
SCOPE Circadian rhythms allow organisms to anticipate and adapt to environmental changes, and food components can adjust internal rhythms. Proanthocyanidins improve cardiovascular risk factors that exhibit circadian oscillations. Therefore, the aim of the current study was to determine whether proanthocyanidins can modulate body rhythms. METHODS AND(More)
Metabolism follows circadian rhythms, which are driven by peripheral clocks. Clock genes in the liver are entrained by daytime meals and food components. Proanthocyanidins (PAs), the most abundant flavonoids in the human diet, modulate lipid and glucose metabolism. The aim of this study was to determine whether PAs could adjust the clock system in the(More)