Learn More
In vertebrates, muscles of the limbs and body wall derive from the lateral compartment of the embryonic somites, and axial muscles derive from the medial compartment. Whereas the mechanisms that direct patterning of somites along the dorsoventral axis are beginning to be understood, little is known about the tissue interactions and signaling molecules that(More)
BACKGROUND Neurons of the vertebrate central nervous system (CNS) are generated sequentially over a prolonged period from dividing neuroepithelial progenitor cells. Some cells in the progenitor cell population continue to proliferate while others stop dividing and differentiate as neurons. The mechanism that maintains the balance between these two(More)
The chick dermis is known to control the formation of feathers and interfeathery skin in a hexagonal pattern. The evidence that the segregation of two types of fibroblasts involves Delta/Notch signalling is based on three facts. Rings of C-Delta-1-expressing fibroblasts precede and delimit the forming feather primordia. C-Delta-1 is uniformly expressed in(More)
In the vertebrate embryo, the lateral compartment of the somite gives rise to muscles of the limb and body wall and is patterned in response to lateral-plate-derived BMP4. Activation of the myogenic program distinctive to the medial somite, i.e. relatively immediate development of the epaxial muscle lineage, requires neutralization of this lateral signal.(More)
The Notch receptor is involved in many cell fate determination events in vertebrates and invertebrates. It has been shown in Drosophila melanogaster that Delta-dependent Notch signaling activates the transcription factor Suppressor of Hairless, leading to an increased expression of the Enhancer of Split genes. Genetic evidence has also implicated the(More)
In zebrafish, Hedgehog-induced Engrailed expression defines a muscle fibre population that includes both slow and fast fibre types and exhibits an organisational role on myotome and surrounding tissues, such as motoneurons and lateral line. This Engrailed-positive population is restricted in the myotome to a central domain. To understand how this population(More)
Recent evidence indicates that oligodendrocytes originate initially from the ventral neural tube. We have documented in chick embryos the effect of early ventralization of the dorsal neural tube on oligodendrocyte differentiation. Notochord or floor plate grafted at stage 10 in dorsal position induced the development of oligodendrocyte precursors in the(More)
In zebrafish, skeletal muscle precursors can adopt at least three distinct fates: fast, non-pioneer slow, or pioneer slow muscle fibers. Slow muscle fibers develop from adaxial cells and depend on Hedgehog signaling. We analyzed when precursors become committed to their fates and the step(s) along their differentiation pathway affected by Hedgehog.(More)
As a consequence of their segmented arrangement and the diversity of their tissue derivatives, somites are key elements in the establishment of the metameric body plan in vertebrates. This article aims to largely review what is known about somite development, from the initial stages of somite formation through the process of somite regionalization along the(More)
Owing to its phylogenetic position at the base of the chordates, the cephalochordate amphioxus is an emerging model system carrying immense significance for understanding the evolution of vertebrate development. One important shortcoming of amphioxus as a model organism has been the unavailability of animal husbandry protocols to maintain amphioxus adults(More)