Learn More
Insulin and the insulin-like growth factors (IGFs) may directly affect the development of the nervous system. NGF, IGF-II, and insulin's effects on neurite formation and neuronal survival were studied in peripheral ganglion cell cultures from chick embryos. Neurite outgrowth was enhanced in a dose-dependent manner by insulin and IGF-II in sympathetic cell(More)
We presented evidence previously that decreasing the glycosylation state of the Kv1.1 potassium channel modified its gating by a combined surface potential and a cooperative subunit interaction mechanism and these effects modified simulated action potentials. Here we continued to test the hypothesis that glycosylation affects channel function in a(More)
Highly purified sodium channel protein from the electric eel, Electrophorus electricus, was reconstituted into liposomes and incorporated into planar bilayers made from neutral phospholipids dissolved in decane. The purest sodium channel preparations consisted of only the large, 260-kD tetrodotoxin (TTX)-binding polypeptide. For all preparations,(More)
Sodium channels from human cortex were fused into planar lipid bilayers in the presence of batrachotoxin, and their single channel properties examined. Single channel slope conductance averaged 26 ps; tetrodotoxin block of the channels was voltage dependent with a K1/2 at 0 mV of 51 nM. The channel was asymmetrically selective for sodium over potassium. The(More)
In serum-free medium, SH-SY5Y human neuroblastoma cells specifically and reversibly lost the capacity to bind 125I-labeled nerve growth factor (NGF) to the high-affinity sites (slow sites) and to respond by neurite outgrowth, unless physiological concentrations of insulin or insulin-like growth factor II were present. In serum-containing medium,(More)
Trypanosome lytic factor 1 (TLF1) is a subclass of human high-density lipoprotein that kills some African trypanosomes thereby protecting humans from infection. We have shown that TLF1 is a 500 kDa HDL complex composed of lipids and at least seven different proteins. Here we present evidence outlining a new paradigm for the mechanism of lysis; TLF1 forms(More)
Satellite glia cells (SGCs), within the dorsal root ganglia (DRG), surround the somata of most sensory neurons. SGCs have been shown to interact with sensory neurons and appear to be involved in the processing of afferent information. We found that in rat DRG various N-methyl-D-aspartate receptor (NMDAr) subunits were expressed in SGCs in intact ganglia and(More)
BACKGROUND Neuronal excitability is in part determined by Ca2+ availability that is controlled by regulatory mechanisms of cytosolic Ca2+ ([Ca2+]cyt). Alteration of any of those mechanisms by volatile anesthetics (VAs) may lead to a change in presynaptic transmission and postsynaptic excitability. Using a human neuroblastoma cell line, the effects of(More)
BACKGROUND In addition to inhibiting the excitation conduction process in peripheral nerves, local anesthetics (LAs) cause toxic effects on the central nervous system, cardiovascular system, neuromuscular junction, and cell metabolism. Different postoperative neurological complications are ascribed to the cytotoxicity of LAs, but the underlying mechanisms(More)