Eshel Faraggi

Learn More
This article attempts to increase the prediction accuracy of residue solvent accessibility and real-value backbone torsion angles of proteins through improved learning. Most methods developed for improving the backpropagation algorithm of artificial neural networks are limited to small neural networks. Here, we introduce a guided-learning method suitable(More)
Accurate prediction of protein secondary structure is essential for accurate sequence alignment, three-dimensional structure modeling, and function prediction. The accuracy of ab initio secondary structure prediction from sequence, however, has only increased from around 77 to 80% over the past decade. Here, we developed a multistep neural-network algorithm(More)
Short and long disordered regions of proteins have different preference for different amino acid residues. Different methods often have to be trained to predict them separately. In this study, we developed a single neural-network-based technique called SPINE-D that makes a three-state prediction first (ordered residues and disordered residues in short and(More)
MOTIVATION In recent years, development of a single-method fold-recognition server lags behind consensus and multiple template techniques. However, a good consensus prediction relies on the accuracy of individual methods. This article reports our efforts to further improve a single-method fold recognition technique called SPARKS by changing the alignment(More)
Local structures predicted from protein sequences are used extensively in every aspect of modeling and prediction of protein structure and function. For more than 50 years, they have been predicted at a low-resolution coarse-grained level (e.g., three-state secondary structure). Here, we combine a two-state classifier with real-value predictor to predict(More)
The backbone structure of a protein is largely determined by the phi and psi torsion angles. Thus, knowing these angles, even if approximately, will be very useful for protein-structure prediction. However, in a previous work, a sequence-based, real-value prediction of psi angle could only achieve a mean absolute error of 54 degrees (83 degrees, 35 degrees,(More)
Protein molecules exhibit varying degrees of flexibility throughout their three-dimensional structures. Protein structural flexibility is often characterized by fluctuations in the Cartesian coordinate space. On the other hand, the protein backbone can be mostly defined by two torsion angles ϕ and ψ only. We introduce a new flexibility descriptor, backbone(More)
A neural network method (SPINE-2D) is introduced to provide a sequence-based prediction of residue-residue contact maps. This method is built on the success of SPINE in predicting secondary structure, residue solvent accessibility, and backbone torsion angles via large-scale training with overfit protection and a two-layer neural network. SPINE-2D achieved(More)
Accurate identification of immunogenic regions in a given antigen chain is a difficult and actively pursued problem. Although accurate predictors for T-cell epitopes are already in place, the prediction of the B-cell epitopes requires further research. We overview the available approaches for the prediction of B-cell epitopes and propose a novel and(More)
We present a new approach for predicting the Accessible Surface Area (ASA) using a General Neural Network (GENN). The novelty of the new approach lies in not using residue mutation profiles generated by multiple sequence alignments as descriptive inputs. Instead we use solely sequential window information and global features such as single-residue and(More)