Learn More
Recent studies showing that detergent-resistant membrane fragments can be isolated from cells suggest that biological membranes are not always in a liquid-crystalline phase. Instead, sphingolipid and cholesterol-rich membranes such as plasma membranes appear to exist, at least partially, in the liquid-ordered phase or a phase with similar properties.(More)
The clearest function of membrane lipids is to form amphipathic bilayers that surround cells and organelles and block leakage of hydrophilic compounds while housing membrane proteins. However, the wide variety of lipids observed in biological membranes would not be required for a simple barrier function. Phospholipids alone display a variety of headgroup(More)
Proteins anchored by GPI are poorly solubilized from cell membranes by cold nonionic detergents because they associate with detergent-resistant membranes rich in cholesterol and sphingolipids. In this study, we demonstrated that cholesterol and sphingolipid-rich liposomes were incompletely solubilized by Triton X-100. GPI-anchored placental alkaline(More)
This report describes a method suitable for determining the depth of a wide variety of fluorescent molecules embedded in membranes. The method involves determination of the parallax in the apparent location of fluorophores detected when quenching by phospholipids spin-labeled at two different depths is compared. By use of straightforward algebraic(More)
Detergent-insoluble membrane fragments that are rich in sphingolipid and cholesterol can be isolated from both cell lysates and model membranes. We have proposed that these arise from membranes that are in the liquid-ordered phase both in vivo and in vitro [Schroeder et al. (1994) Proc. Natl. Acad. Sci. U.S.A. 91, 12130-12134]. In order to detect formation(More)
Ordered lipid domains enriched in sphingolipids and cholesterol (lipid rafts) have been implicated in numerous functions in biological membranes. We recently found that lipid domain/raft formation is dependent on the sterol component having a structure that allows tight packing with lipids having saturated acyl chains (Xu, X., and London, E. (2000)(More)
Detergent-insoluble membrane domains, enriched in saturated lipids and cholesterol, have been implicated in numerous biological functions. To understand how cholesterol promotes domain formation, the effect of various sterols and sterol derivatives on domain formation in mixtures of the saturated lipid dipalmitoylphosphatidylcholine (DPPC) and a(More)
The average membrane location of a series of diphenylhexatriene (DPH)-derived membrane probes was analyzed by measuring the quenching of DPH fluorescence with a series of nitroxide-labeled lipids in which the depth of the nitroxide group is varied. All DPH derivatives were located deeply within the bilayer. Some derivatives were anchored at a shallower(More)
Detergent-resistant membrane domains (DRMs) can be isolated from a variety of eukaryotic cells. DRMs are of interest because of their potential importance in processes such as intracellular membrane sorting, and signal transduction at the cell surface. One type of DRM is also present in caveolae, non clathrin-coated plasma membrane pits with proposed roles(More)