Erwin J. Alles

Learn More
In this research, we examined whether fixed pattern noise or more specifically Photo Response Non-Uniformity (PRNU) can be used to identify the source camera of heavily JPEG compressed digital photographs of resolution 640 x 480 pixels. We extracted PRNU patterns from both reference and questioned images using a two-dimensional Gaussian filter and compared(More)
In this paper, we propose a method to exploit photo response non-uniformity (PRNU) to identify the source camera of heavily JPEG compressed digital photographs of resolution 640 times 480 pixels. Similarly to research reported previously, we extract the PRNU patterns from both reference and questioned images using a two-dimensional high-pass filter and(More)
Simulations of acoustic wavefields in inhomogeneous media are always performed on finite numerical domains. If contrasts actually extend over the domain boundaries of the numerical volume, unwanted, non-physical reflections from the boundaries will occur. One technique to suppress these reflections is to attenuate them in a locally reflectionless absorbing(More)
In biomedical all-optical pulse-echo ultrasound systems, ultrasound is generated with the photoacoustic effect by illuminating an optically absorbing structure with a temporally modulated light source. Nanosecond range laser pulses are typically used, which can yield bandwidths exceeding 100 MHz. However, acoustical attenuation within tissue or(More)
A novel fluidic actuation system has been developed for in situ imaging of anatomic tissues. The actuator consists of a micromachined superelastic tool guide driven by a pair of pneumatic artificial muscles. Two additional working channels allow easy interchange of instruments or sensing equipment. This paper describes the design and construction of the(More)
A miniature, directional fibre-optic acoustic source is presented that employs geometrical focussing to generate a nearly-collimated acoustic pencil beam. When paired with a fibre-optic acoustic detector, an all-optical ultrasound probe with an outer diameter of 2.5 mm is obtained that acquires a pulse-echo image line at each probe position without the need(More)
A miniature all-optical ultrasound imaging system is presented that generates three-dimensional images using a stationary, real acoustic source aperture. Discrete acoustic sources were sequentially addressed by scanning a focussed optical beam across the proximal end of a coherent fibre bundle; high-frequency ultrasound (156% fractional bandwidth centred(More)
Ultrasound arrays used for medical imaging consist of many elements placed closely together. Ideally, each element vibrates independently. However, because of mechanical coupling, crosstalk between neighboring elements may occur. To quantify the amount of crosstalk, the transducer velocity distribution should be measured. In this work, a method is presented(More)
The fast nearfield method, when combined with time-space decomposition, is a rapid and accurate approach for calculating transient nearfield pressures generated by ultrasound transducers. However, the standard time-space decomposition approach is only applicable to certain analytical representations of the temporal transducer surface velocity that, when(More)