Learn More
Biodiversity is essential to the viability of ecological systems. Species diversity in ecosystems is promoted by cyclic, non-hierarchical interactions among competing populations. Central features of such non-transitive relations are represented by the 'rock-paper-scissors' game, in which rock crushes scissors, scissors cut paper, and paper wraps rock. In(More)
Noise and spatial degrees of freedom characterize most ecosystems. Some aspects of their influence on the coevolution of populations with cyclic interspecies competition have been demonstrated in recent experiments [e.g., B. Kerr, Nature (London) 418, 171 (2002)10.1038/nature00823]. To reach a better theoretical understanding of these phenomena, we consider(More)
Length regulation of microtubules (MTs) is essential for many cellular processes. Molecular motors like kinesin-8, which move along MTs and also act as depolymerases, are known as key players in MT dynamics. However, the regulatory mechanisms of length control remain elusive. Here, we investigate a stochastic model accounting for the interplay between(More)
  • Katja M Taute, Francesco Pampaloni, Erwin Frey, Ernst-Ludwig Florin
  • 2007
Thermal shape fluctuations of grafted microtubules were studied using high resolution particle tracking of attached fluorescent beads. First mode relaxation times were extracted from the mean square displacement in the transverse coordinate. For microtubules shorter than ∼10 µm, the relaxation times were found to follow an L 2 dependence instead of L 4 as(More)
Cyclic dominance of species has been identified as a potential mechanism to maintain biodiversity, see, e.g., B. Kerr, M. A. Riley, M. W. Feldman and B. J. M. Bohannan [Nature 418, 171 (2002)] and B. Kirkup and M. A. Riley [Nature 428, 412 (2004)]. Through analytical methods supported by numerical simulations, we address this issue by studying the(More)
Microbes providing public goods are widespread in nature despite running the risk of being exploited by free-riders. However, the precise ecological factors supporting cooperation are still puzzling. Following recent experiments, we consider the role of population growth and the repetitive fragmentation of populations into new colonies mimicking simple(More)
The successful design of nanofluidic devices for the manipulation of biopolymers requires an understanding of how the predictions of soft condensed matter physics scale with device dimensions. Here we present measurements of DNA extended in nanochannels and show that below a critical width roughly twice the persistence length there is a crossover in the(More)
Min-protein oscillations in Escherichia coli are characterized by the remarkable robustness with which spatial patterns dynamically adapt to variations of cell geometry. Moreover, adaption, and therefore proper cell division, is independent of temperature. These observations raise fundamental questions about the mechanisms establishing robust Min(More)
We study the influence of filament elasticity on the motion of collective molecular motors. It is found that for a backbone flexibility exceeding a characteristic value (motor stiffness divided through the mean displacement between attached motors), the ability of motors to produce force reduces as compared to rigidly coupled motors, while the maximum(More)
The formation of out-of-equilibrium patterns is a characteristic feature of spatially extended, biodiverse, ecological systems. Intriguing examples are provided by cyclic competition of species, as metaphorically described by the 'rock-paper-scissors' game. Both experimentally and theoretically, such non-transitive interactions have been found to induce(More)