Learn More
We study a one-dimensional totally asymmetric exclusion process with random particle attachments and detachments in the bulk. The resulting dynamics leads to unexpected stationary regimes for large but finite systems. Such regimes are characterized by a phase coexistence of low and high density regions separated by domain walls. We use a mean-field approach(More)
Microtubules are hollow cylindrical structures that constitute one of the three major classes of cytoskeletal filaments. On the mesoscopic length scale of a cell, their material properties are characterized by a single stiffness parameter, the persistence length l(p). Its value, in general, depends on the microscopic interactions between the constituent(More)
Biodiversity is essential to the viability of ecological systems. Species diversity in ecosystems is promoted by cyclic, non-hierarchical interactions among competing populations. Central features of such non-transitive relations are represented by the 'rock-paper-scissors' game, in which rock crushes scissors, scissors cut paper, and paper wraps rock. In(More)
We discuss a class of driven lattice gas obtained by coupling the one-dimensional totally asymmetric simple exclusion process to Langmuir kinetics. In the limit where these dynamics are competing, the resulting nonconserved flow of particles on the lattice leads to stationary regimes for large but finite systems. We observe unexpected properties such as(More)
Ecological systems are complex assemblies of large numbers of individuals, interacting competitively under multifaceted environmental conditions. Recent studies using microbial laboratory communities have revealed some of the self-organization principles underneath the complexity of these systems. A major role of the inherent stochasticity of its dynamics(More)
Establishment of cell polarity--or symmetry breaking--relies on local accumulation of polarity regulators. Although simple positive feedback is sufficient to drive symmetry breaking, it is highly sensitive to stochastic fluctuations typical for living cells. Here, by integrating mathematical modelling with quantitative experimental validations, we show that(More)
Fluorescent proteins (FPs) are widely used in biochemistry, biology and biophysics. For quantitative analysis of gene expression FPs are often used as marking molecules. Therefore, sufficient knowledge of maturation times and their affecting factors is of high interest. Here, we investigate the maturation process of the FPs GFP and mCherry expressed by the(More)
The mechanical properties of cytoskeletal actin bundles play an essential role in numerous physiological processes, including hearing, fertilization, cell migration, and growth. Cells employ a multitude of actin-binding proteins to actively regulate bundle dimensions and cross-linking properties to suit biological function. The mechanical properties of(More)
The successful design of nanofluidic devices for the manipulation of biopolymers requires an understanding of how the predictions of soft condensed matter physics scale with device dimensions. Here we present measurements of DNA extended in nanochannels and show that below a critical width roughly twice the persistence length there is a crossover in the(More)
We describe a theoretical and experimental analysis of the interaction between microtubules and dimeric motor proteins (kinesin, NCD), with special emphasis on the stoichiometry of the interaction, cooperative effects, and their consequences for the interpretation of biochemical and image reconstruction results. Monomeric motors can bind equivalently to(More)