Erwan Hillion

Learn More
We introduce a framework to consider transport problems for integer-valued random variables. We introduce weighting coefficients which allow us to characterise transport problems in a gradient flow setting, and form the basis of our introduction of a discrete version of the Benamou–Brenier formula. Further, we use these coefficients to state a new form of(More)
J o u r n a l o f P r o b a b i l i t y Electron. Abstract We generalize an equation introduced by Benamou and Brenier in [BB00] and characterizing Wasserstein Wp-geodesics for p > 1, from the continuous setting of probability distributions on a Riemannian manifold to the discrete setting of probability distributions on a general graph. Given an initial and(More)
  • 1