Erwan Grasland-Mongrain

Learn More
Using an original microfabrication-based technique, we experimentally study situations in which a virgin surface is presented to a confluent epithelium with no damage made to the cells. Although inspired by wound-healing experiments, the situation is markedly different from classical scratch wounding because it focuses on the influence of the free surface(More)
We report quantitative measurements of the velocity field of collectively migrating cells in a motile epithelium. The migration is triggered by presenting free surface to an initially confluent monolayer by using a microstencil technique that does not damage the cells. To avoid the technical difficulties inherent in the tracking of single cells, the field(More)
Collective cell migration is often characterized by the spontaneous onset of multicellular protrusions (known as fingers) led by a single leader cell. Working with epithelial Madin-Darby canine kidney monolayers we show that cells within the fingers, as compared with the epithelium, are well oriented and polarized along the main finger direction, which(More)
Collective cell migration is of great significance in many biological processes. The goal of this work is to give a physical model for the dynamics of cell migration during the wound healing response. Experiments demonstrate that an initially uniform cell-culture monolayer expands in a nonuniform manner, developing fingerlike shapes. These fingerlike shapes(More)
Modelling the displacement of thousands of cells that move in a collective way is required for the simulation and the theoretical analysis of various biological processes. Here, we tackle this question in the controlled setting where the motion of Madin-Darby Canine Kidney (MDCK) cells in a confluent epithelium is triggered by the unmasking of free surface.(More)
Darren R. Link,1∗ Erwan Grasland-Mongrain, Agnes Duri, Flavie Sarrazin, Zhengdong Cheng, Galder Cristobal, Manuel Marquez, David A. Weitz 1∗ Department of Physics and DEAS, Harvard University, 40 Oxford St, Cambridge, MA 02138, USA 2 Los Alamos National Laboratory, Chemistry Division, Los Alamos, New Mexico 87545 USA 3 Kraft Foods R&D, The Nanotechnology(More)
The precision manipulation of streams of fluids with microfluidic devices is revolutionizing many fluid-based technologies and enabling the development of high-throughput reactors that use minute quantities of reagents. However, as the scale of these reactors shrinks, contamination effects due to surface adsorption and diffusion limit the smallest(More)
  • 1