Erping Li

Learn More
Rights IEEE Transactions on Very Large Scale Integration (VLSI) Systems © 2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this(More)
Reducing the gap between two metal nanoparticles down to atomic dimensions uncovers novel plasmon resonant modes. Of particular interest is a mode known as the charge transfer plasmon (CTP). This mode has been experimentally observed in touching nanoparticles, where charges can shuttle between the nanoparticles via a conductive path. However, the CTP mode(More)
We demonstrate near field enhancement generation in silver nanoantenna-superlens systems via numerical modeling. Using near-field interference and global optimization algorithms, we can design nanoantenna-superlens systems with mismatched permittivities, whose performance can match those with matched permittivities. The systems studied here may find broad(More)
After a decade of intensive research on two-dimensional (2D) materials inspired by the discovery of graphene, the field of 2D electronics has reached a stage with booming materials and device architectures. However, the efficient integration of 2D functional layers with three-dimensional (3D) systems remains a significant challenge, limiting device(More)
Enlarged group index has been reported previously when surface plasmons propagate through the graphene sheet, yet a clear slow wave performance in graphene has not been explored. We proposed and numerically analyzed here for the first time to the best of our knowledge an extremely wideband slow surface wave in a graphene-based grating waveguide. The(More)
The ballistic regime gives the upper limit of an electron device performance. This paper proposes a fast and efficient model for calculating the current–voltage characteristic of a cylindrical nanowire within the framework of the non-equilibrium Green's function. Under certain assumptions, the calculation is simplified to a one-dimensional problem and the(More)
A full-polarization arbitrary-shaped 3D metasurface cloak with preserved amplitude and phase in microwave frequencies is experimentally demonstrated. By taking the unique feature of metasurfaces, it is shown that the cloak can completely restore the polarization, amplitude, and phase of light for full polarization as if light was incident on a flat mirror.
However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and(More)
This paper reports the development of global FDTD models incorporated with a quasi-real anisotropic ionosphere consisting of magnetized cold plasmas. Compared to the existing global models utilizing simple conductivity ionospheric profiles, the algorithms reported in this paper can sufficiently extend the global-scale electromagnetic simulations to much(More)
This Letter introduces a new mechanism to reverse and control the effect of losses in the plasmonic systems by using a coupled parity-time symmetric graphene waveguide with complex potentials. In order to explore the uncharted properties of parity-time symmetric graphene plasmons, this Letter analytically shows the plasmonic parity-time symmetry breaking in(More)