Ernst van der Maaten

Learn More
The climate sensitivity of radial growth in European beech (Fagus sylvatica L.) was analyzed within a narrow valley in the Swabian Alb (southwestern Germany). We collected stem disks from three aspects (NE, NW and SW) of trees belonging to different social classes. Common climatic factors limiting growth across the valley were identified using a principal(More)
Forests respond differently to changes in climate depending on individual site characteristics and tree status. Site conditions may buffer or boost impacts of heat, drought, and storm events. Considering contemporary changes in climate (Christensen et al. 2007), warming may increase forest productivity in those parts of Europe where growth resources like(More)
European beech showed low resistance but high resilience in radial growth after an extreme late frost event. Site-specific growth reductions correlated with absolute minimum temperature in May. Late spring frost events occurring after the early leaf unfolding (“false spring”) can result in severe leaf damages in deciduous trees. With climate warming, such(More)
For Central Europe, climate projections foresee an increase in temperature combined with decreasing summer precipitation, resulting in drier conditions during the growing season. This might negatively affect forest growth, especially at sites that are already water-limited, i.e., at low elevation. At higher altitudes trees might profit from increasing(More)
We compare the climate sensitivity of European beech (Fagus sylvatica L.) in two forest nature reserves in northeastern Germany. The one reserve, Schlossberg, is characterized by shallow chalk soils, whereas in the other reserve, Eldena, soils are deeper and more developed. Little is known about the drought sensitivity of beech on shallow chalk soils. We(More)
In the German Democratic Republic (GDR), resin tapping in Scots pine (Pinus sylvestris L.) forests was a major economic activity, and resin-tapped stands are frequently found up until this day. In this study, we investigate how the mechanical damage caused by resin tapping affects the growth and climate sensitivity of Scots pine using a dendroecological(More)
  • 1