Ernesto R Bongarzone

Learn More
Perinatal hypoxia/ischemia (H/I) is the leading cause of neurologic injury resulting from birth complications. Recent advances in critical care have dramatically improved the survival rate of infants suffering this insult, but approximately 50% of survivors will develop neurologic sequelae such as cerebral palsy, epilepsy or cognitive deficits. Here we(More)
The postnatal subventricular zone (SVZ) is a niche for continuous neurogenesis in the adult brain and likely plays a fundamental role in self-repair responses in neurodegenerative conditions. Maintenance of the pool of neural stem cells within this area depends on cell-cell communication such as that provided by the Notch signaling pathway. Notch1 receptor(More)
Expression of the dopamine D3 receptor (D3r) was found in primary mixed glial cultures from newborn brain and in the corpus callosum in vivo during the peak of myelination. Expression of the D3r mRNA, but not D2r mRNA, was detected as early as 5 d in vitro (DIV) by RT-PCR. Immunoblot studies revealed D3r protein was also expressed in the cultures. Double(More)
Activity of the Notch1 gene is known to inhibit oligodendrocyte (OL) differentiation in vitro. We tested the hypothesis that the Notch1 pathway regulates in vivo myelin formation, by examining brain myelination of Notch1 receptor null heterozygotes mutant animals (Notch1(+/-)). We show that a deficiency in Notch1 expression leads to increased abundance of(More)
This study characterized the therapeutic benefits of combining hematogenous cell replacement with lentiviral-mediated gene transfer of galactosylceramidase (GALC) in Twitcher mice, a bona fide model for Krabbe disease. Bone marrow cells and GALC-lentiviral vectors were administered intravenously without any preconditioning to newborn Twitcher pups before(More)
The purinergic receptor P2x7 is expressed on myeloid cells as well as on CNS glial cells, and P2x7 activation has been shown to increase both glial and T-cell activation. These properties suggest a role in the development of autoimmune disease including multiple sclerosis. The animal model of MS, experimental autoimmune encephalomyelitis (EAE) using myelin(More)
The myelin proteolipid protein (PLP) gene (i.e., the PLP/DM20 gene) has been of some interest because of its role in certain human demyelinating diseases, such as Pelizaeus-Merzbacher disease. A substantial amount of evidence, including neuronal pathology in knock-out and transgenic animals, suggests the gene also has functions unrelated to myelin(More)
The myelin basic protein (MBP) gene produces two families of proteins, the classic MBPs, important for myelination of the CNS, and the golli proteins, whose biological role in oligodendrocytes (OLs) is still unknown. The goals of this work were to study the in vitro pattern of expression of the golli products during OL differentiation and to compare it with(More)
Vitamin C is an essential micronutrient in the human diet; its deficiency leads to a number of symptoms and ultimately death. After entry into cells within the central nervous system (CNS) through sodium vitamin C transporters (SVCTs) and facilitative glucose transporters (GLUTs), vitamin C functions as a neuromodulator, enzymatic cofactor, and reactive(More)
BACKGROUND Demyelination in globoid cell leukodystrophy (GLD) is due to a deficiency of galactocerebrosidase (GALC) activity. Up to now, in vivo brain viral gene transfer of GALC showed modest impact on disease development in Twitcher mice, an animal model for GLD. Lentiviral vectors, which are highly efficient to transfer the expression of therapeutic(More)